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Deep Learning for Human Sensing

* Requirements for success (from more to less critical)
* Data: A lot of real-world data (and algorithms that learn from data)
* Semi-supervised: Human annotations of representative subsets of data
» Efficient annotation: Specialized annotation tooling
* Hardware: Large-scale distributed compute and storage
* Robustness: Algorithms that don’t need calibration (learn the calibration)
* Temporal dynamics: Algorithms that consider time

* Current importance relation for successful application of deep learning:

Good Algorithms™

* As long as they learn from data

Representation
Learning

Machine
Learning

Artificial
Intelligence
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Overview

Human Imperfections
Pedestrian Detection
Body Pose Estimation
Glance Classification
Emotion Recognition
Cognitive Load Estimation

Human-Centered Vision for Autonomous Vehicles
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Humans Are Amazing

AERID!
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Humans Are Amazing

e 3.22 trillion miles (US, 2016) 1 fatality per 80 million miles

* 40,200 fatalities (US, 2016) * 1in 625 chance of dying in car crash
(in your lifetime)

BOSTON ‘ 637 5
: ' 2014 (GMT-4)
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Humans are Flawed

What is distracted driving?

Texting

Using a smartphone
Eating and drinking
Talking to passengers
Grooming

Reading, including maps
Using a navigation system
Watching a video
Adjusting a radio

* Injuries and fatalities:

3,179 people were killed and 431,000 were

injured in motor vehicle crashes involving

distracted drivers
(in 2014)

* Texts:

169.3 billion text messages were sent in the

US every month.
(as of December 2014)

* Eye off road:

5 seconds is the average time your eyes are

off the road while texting. When traveling

at 55mph, that's enough time to cover the
length of a football field blindfolded.
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Humans are Flawed

* Drunk Driving: In 2014, 31 percent of traffic fatalities involved a drunk driver.

* Drugged Driving: 23% of night-time drivers tested positive for illegal, prescription or
over-the-counter medications.

* Distracted Driving: In 2014, 3,179 people (10 percent of overall traffic fatalities) were
killed in crashes involving distracted drivers.

* Drowsy Driving: In 2014, nearly three percent of all traffic fatalities involved a drowsy
driver, and at least 846 people were killed in crashes involving a drowsy driver.
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Two Paths to an Autonomous Future

Al: A2:

Human-Centered Autonomy Blue Text: Easier Full Autonomy

Red Text: Harder

* Localization and Mapping:
Where am I?

e Scene Understanding:
Where/who/what/why of
everyone else?

* Movement Planning:
How do | get from A to B?

* Human-Robot Interaction:
What is the physical and
mental state of the driver?

e Communicate:
How to | convey intent to
the driver and to the world?

Localization and Mapping:
Where am I?

Scene Understanding:
Where/who/what/why of
everyone else?

Movement Planning:
How do | get from A to B?

Human-Robot Interaction:
What is the physical and
mental state of the driver?

Communicate:
How to | convey intent to the
driver and to the world?

N B Massachusetts
I I Institute of
Technology

MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
https://selfdrivingcars.mit.edu lex.mit.edu 2018



Is partially automated driving a bad idea? Observations from an on-
road study

Article - April 2018 with 447 Reads

DOI: 10.1016/j.apergo.2017.11.010 . Cite this publication

Alexander Eriksson

. Victoria Banks
0 ul 14.44 - University of Southampton 41111.13 - Swedish National Road and Transport Research Inst...
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Neville A Stanton

ifien O'donoghue 1143.23 - University of Southampton
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Public Perception of What Drivers Do
in Semi-Autonomous Vehicles




Public Perception of What Drivers Do
in Semi-Autonomous Vehicles
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MIT-AVT Naturalistic Driving Dataset

Vehicles instrumented: 25
Distance traveled: 275,000+ miles

Video frames: 4.7+ billion

I I I =+ m:‘si:::::l,?eﬁs MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
I I Technology https://selfdrivingcars.mit.edu lex.mit.edu 2018



Hardware
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RIDER Logger Hardware

Heartbeat
Database

Heartbeat GUI
(Web-Based)

Software

Legend:

Small Data 1Gb

100 Gb
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Human Behavior Shared Autonomy

SN/ AN

Understand Assist Share
Behavior Behavior Control

T T T

Semi-Supervised Learning

Large-Scale Naturalistic Data
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MIT-AVT Naturalistic Driving Dataset

MIT Autonomous Vehicle
Technology Study

Tesla Model S
24,657 miles
588 days in study

Tesla Model X
22,001 miles
421 days in study

Tesla Model S
18,896 miles
435 days in study

Study months to-date: 21
Participant days: 7,146
Drivers: 78

Vehicles: 25

Miles driven: 275,589
Video frames: 3.48 billion

Tesla Model S
18,666 miles
353 days in study

Tesla Model S
15,735 miles
322 days in study

Range Rover
Evoque

18,130 miles

483 days in study

Tesla Model X
15,074 miles
276 days in study

Tesla Model S
14,410 miles
371 days in study

Range Rover
Evoque

14,499 miles

440 days in study

Study data collection is ongoling

Statistics updated on. Oct 23, 2017.

Tesla Model S
14,117 miles
248 days in study

Volvo S90
13,970 miles
325 days in study

Tesla Model S
12,353 miles
321 days in study

Volvo S90
11,072 miles
412 days in study

mp Tesla Model X Tesla Model S Tesla Model S Tesla Model S
’ - 10,271 miles 9,188 miles 8,319 miles 6,720 miles
! EJ 366 days in study 183 days in study 374 days in study 194 days in study

Tesla Model S Tesla Model X Tesla Model S Tesla Model X
5,186 miles 5,111 miles L = N 4,596 miles 4,587 miles

| —— -
91 days in study 232 days in study | = 132 days in study 233 days in study

Tesla Model S Tesla Model X Tesla Model S

m Tesla Model X

‘ - 3,719 miles 3,006 miles 1,306 miles (Offload pending)
B ¥ 133 days in study 144 days in study 69 days in study
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500+ Miles / Day and Growing

Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016 Oct 2016 Nov 2016 Dec 2016

100-200 miles/day

400-500 miles/day
600-700 miles/day
800-900 miles/day

Dato collection
is on-going.. 1000+ miles/day

Jan 2017 Feb 2017 Mar 2017 Apr 2017 May 2017 Jun 2017 Jul 2017 Aug 2017

300,000
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150,000 1

100,000

50,000

Cumulative Distance Traveled (miles)

0 100 200 300 400 500 600
Study Duration (days)
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Tesla Autopilot: Patterns of Use

Autopilot

33.8%
(54,358 miles)

66.2%
(106,270 miles)

Manual

33.8% of the miles driven are with Autopilot engaged
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Physical Engagement:
Glance Classification

Latest gaze classification:
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Semi-Autonomous Driving:
Observed Patterns of Behavior

e The “how” of successful human-robot interaction:

Use but Don't Trust.

* The “why” of successful human-robot interaction:

Learn Limitations by Exploring.
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Deep Learning for Human Sensing

* Requirements for success (from more to less critical)
* Data: A lot of real-world data (and algorithms that learn from data)
* Semi-supervised: Human annotations of representative subsets of data
» Efficient annotation: Specialized annotation tooling
* Hardware: Large-scale distributed compute and storage
* Robustness: Algorithms that don’t need calibration (learn the calibration)
* Temporal dynamics: Algorithms that consider time

* Current importance relation for successful application of deep learning:

Good Algorithms™

* As long as they learn from data

Representation
Learning

Machine
Learning

Artificial
Intelligence
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Overview

Human Imperfections
Pedestrian Detection
Body Pose Estimation
Glance Classification
Emotion Recognition
Cognitive Load Estimation

Human-Centered Vision for Autonomous Vehicles
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Human Sensing:
A Deep Learning Perspective

Increasing level of detection resolution and difficulty

Pedestrian Body Head Blink Blink Eye Blink Pupil Micro
Detection Pose Pose Rate Duration Pose Dynamics Diameter Saccades

Face Face Glance . Micro Cognitive
i e L. e L. Drowsiness
Detection | | Classification | |Classification Glances Load

I I I el m:‘si::::::;?etts MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
I I Technology https://selfdrivingcars.mit.edu lex.mit.edu 2018



Pedestrian Detection

* The usual challenges, e.g.:
e Various style of clothing in appearance
» Different possible articulations
* The presence of occluding accessories
* Frequent occlusion between pedestrians

* History of object detection
* Sliding window
* Haar Cascades

* Histogram of Oriented Features
* CNN person ( s

* R-CNN, Fast R-CNN, Faster R-CNN P ¢
* Mask RCNN (adds segmentation)
» VoxelNet (detection in 3D space)

I W Massachusetts For the full updated list of references visit:
I I Institute of
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R-CNN: Regions with CNN Features

e Simple algorithm
* Extract region proposals
(selective search)

* Use CNN on each one
(w/ non-maximum suppression)
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e Per 10 hours (1 recording day)
* 12,000 pedestrians
e 21,600,000 samples of feature vector
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Naturalistic Driving Data:

Pedestrians, Cyclists, Other Cars

ZED Stereo Camera Gear 360 Camera

Velodyne VLP-16 Velodyne HDL-64E

352
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Naturalistic Driving Data:

Pedestrians, Cyclists, Other Cars
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Naturalistic Driving Data:

Pedestrians, Cyclists, Other Cars
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Naturalistic Driving Data:

Pedestrians, Cyclists, Other Cars
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Naturalistic Driving Data:

Pedestrians, Cyclists, Other Cars

| Disaster —
| Relief
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Pedestrian Detection
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Overview

Human Imperfections
Pedestrian Detection
Body Pose Estimation
Glance Classification
Emotion Recognition
Cognitive Load Estimation

Human-Centered Vision for Autonomous Vehicles

:fif:f:g?eﬁs For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars
chnology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu

Lex Fridman
lex.mit.edu

January
2018


https://selfdrivingcars.mit.edu/references

Human Sensing:
A Deep Learning Perspective

Increasing level of detection resolution and difficulty

Pedestrian Body Head Blink Blink Eye Blink Pupil Micro

Detection Pose Pose Rate Duration Pose Dynamics Diameter Saccades
Face Face Glance Drowsiness Micro Cognitive

Detection | | Classification | |Classification Glances Load
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e Pattern of body movement
* Vertical position in seat

* General movement

* Beyond body movemnet
* Smartphone
* Hands on wheel
* Activity
* Context for DeepGlance

Cognitive Load

Low

cstimate: 9.6

Glance Region

Right

Confidence: 92%
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Sequential Detection Approach

Sequential Upper Body Pose Estimation:
RGB —» Sequential detection —— Confidences

L
U .
' » -

1 aLeft Wrist
-] 1 R Right Wrist

t+n

Charles, James, et al. "Upper body pose estimation with temporal sequential
forests." Proceedings of the British Machine Vision Conference 2014. BMVA Press, 2014.
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DeepPose: Holistic View

* Why holistic reasoning?

* Besides extreme variability in articulations, many of the joints are
barely visible

'\"H .; i ' 4 &
‘_,'.‘.m’-" l"..f.‘tl"l""‘:
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Cascade of Pose Regressors

-7

alalélé .>

k DNN-based refiner

~-~~
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Part Detection

Elb(r)-Wri(r)! Head-Neck

(a) Input image (b) Confidence maps
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Assemble Parts: Part Affinity Fields
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(b) Confidence maps

Head-Neck
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Bipartite Matching
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Temporal Convolutional Neural Networks

Input Pose heatmaps Optical flow Warped
g heatmaps
Spatial e .
SpatlalNgt Fusion e & Pooled
| com | Layers ‘ Temploral heatmap
conv2 | : : Pooler for frame t
| conv3 i . -

3 . conv2 f | o . conv9 .
:onvs —[conv3 f|lmmp| o * | — | T — A 2
el conv4_f |
L LoV J convs f - .

| conv7 | I H 2 o

| conv8 | Loss 2 - y 9

- g
Loss 1 ’ + &
Output

SpatialNet

convl || conv2 || conv3 || conv4 || conv5 | convé | convZ | conv8 ‘| Vst
5x5x128 || 5x5x128 5x5x128 || 5x5x256 9x9x512l 1x1%256 1x1x256 1x1x7 | 053

pool 2x2 || pool 2x2 |
Spatial fusion layers

| 0SS 2

convl_f{conv2 f|conv3 f|conv4 f|conv5 f
7x7x64 13x13x64 |13x13x128| 1x1x256 Tx1x7

Pfister, Tomas, James Charles, and Andrew Zisserman. "Flowing convnets for human pose estimation in
videos." Proceedings of the IEEE International Conference on Computer Vision. 2015.
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Body Pose
Estimation
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DNN-based refiner
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20 Epochs (30 minutes each)

Body Pose
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Body Pose: 20 Epochs (30 minutes each)
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Pose Estimation

(Outside Vehicle Perspective)
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MIT Pedestrian Dataset

Estimated Pedestrian Glance and Vehicle Speed —— vehicle speed
— glances
10 —— current frame
----- enter lane
- exit lane

Speed (mph)

Gance

0 30 100 130 200 250 30 350
Frame ¥ (20fps)
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MIT Pedestrian Dataset

Estimated Pedestrian Glance and Vehicle Speed — vehicle speed
10 ; — glances
i ~—_ current frame
« enter lane
----- exitlane

Speed (mph)

Glance

o 50 100 130 200 250 300 250 400
Frame # (30fps}

Hmm  Massachusetts . . S A
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MIT Pedestrian Dataset

Estimated Pedestrian Glance and Vehicle Speed — vehicle speed
2 — glances
= current frame
~~~~~ enter lane
~~~~~ xit lane
15
i 10
a
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o T
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o 50 100 150 200 250

Frame # (30fps}

Hmm  Massachusetts . . S A
I I I I I Institute of MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January

Technology https://selfdrivingcars.mit.edu lex.mit.edu 2018



Overview

Human Imperfections
Pedestrian Detection
Body Pose Estimation
Glance Classification
Emotion Recognition
Cognitive Load Estimation

Human-Centered Vision for Autonomous Vehicles
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Human Sensing:
A Deep Learning Perspective

Increasing level of detection resolution and difficulty

Pedestrian Body Head Blink Blink Eye Blink Pupil Micro

Detection Pose Pose Rate Duration Pose Dynamics Diameter Saccades
Glance Drowsiness Micro Cognitive

Classification Glances Load

Face Face
Detection | | Classification
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Glance Classification vs Gaze Estimation

A . : “llllllllll’A‘.'IIII'!L-.-.L“ /
Accuracy: 1 OO%

Accuracy: 1007  Frames: 1 Accuracy: 100%  Frames: 1 Accuracy: 100%  Frames: 1

Time: 0.03 secs Time: 0.03 secs Time: 0.03 secs

Total Confident Decisions: 1 Total Confident Decisions: 1 Total Confident Decisions: 1
Correct Confident Decisions: 1 Correct Confident Decisions: 1 Correct Confident Decisions: 1

Frames: 1

Time: 0.03 secs

Total Confident Decisions: 1
Correct Confident Decisions: 1

Road Road

Road

Frames: 1
Time: 0.03 secs

Accuracy: 100%

Accuracy: 100% Frames: 1 Accuracy: = —% Frames: 1 Accuracy: 100% Frames: 1
Time: 0.03 secs Time: 0.03 secs Time: 0.03 secs

Total Confident Decisions: 1 Total Confident Decisions: 0 Total Confident Decisions: 1 Total Confident Decisions: 1

Correct Confident Decisions: 1 Correct Confident Decisions: 0 Correct Confident Decisions: 1 Correct Confident Decisions: 1
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Pedestrian Glance Classification
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Drive State Detection

Source Video Preprocessing
* Challenge: real-world data is “messy”, have Automated
to deal With: Calibration
* Vibration Video
Stabilization
* Lighting variation
Face

* Body, head, eye movement Frontalization

Motion
e Solution: Magnification

e Automated calibration ‘
* Video stabilization (multi-resolutional) Soleoilnhin Raw Features
* Face part frontalization Facial Actions | | PupilArea | lq || Raw Face Image
e Use deep neural networks (DNN) Blink State | | Pupil Position Raw Eye Image

* No feature engineering

* Use raw data ¢ l

Driver State Detection DNN Models

Cog. Load Emotion Gaze Drowsiness
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Face Alighnment

Te st LB =

* Landmarker.io
* Imperial College London

* Face in the Wild Challenge

XM2VTS
FRGC Ver.2
LFPW
HELEN
AFW

IBUG

* New Datasets

MPIllGaze
Columbia Gaze
300VW

Hmm Massachusetts

Institute of
Technology

MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman
https://selfdrivingcars.mit.edu lex.mit.edu
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2018



Gaze Classification Pipeline

Face detection

Face alignment

Eye/pupil detection

Head (and eye) pose estimation

Classification

o Uk W RE

Decision pruning

Frames: 1 Accuracy: 100%
Time: 0.03 secs
Total Confident Decisions: 1

Frames: 1 Accuracy: 100%
Time: 0.03 secs

Total Confident Decisions: 1

Correct Confident Decisions: 1 Correct Confident Decisions: 1
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Annotation Tooling

“Semi-automated”’:

Ask a human for help with annotation
when the machine is not confident.

Partial light Full light Move out of Hand
occlusion occlusion frame occlusion

e m:‘si:::ehof s MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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N ? __________________ 56666
ChangeDetector 6 - # _________ # _________ + __________ 6 _______________________________

A 4 A

StableStateDetector

Y

ConfidentClassifier Classifier

Human Annotator
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Semi-Automated Annotation Work Flow

* Human in red and machine in blue

Select and load in video of driver face.

Detect face: have we seen this person before?

Localize camera: have we seen this angle before?

Provide tradeoff between accuracy and percent frames.

Select target accuracy: 95%, 99%, or 99.9%

Perform gaze classification on full video (1 hour per 1 hour of video)
Step through and annotate the frames machine did not classify.
(Optional) Re-run steps 6 and 7.

Enjoy fully annotated video!

LN AEWNRE
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Real-Time Glance Classification

Latest gaze classification:

Autopilot Status:
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Overview

Human Imperfections
Pedestrian Detection
Body Pose Estimation
Glance Classification
Emotion Recognition
Cognitive Load Estimation

Human-Centered Vision for Autonomous Vehicles

:fif:f:g?eﬁs For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars
chnology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu

Lex Fridman
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Human Sensing:
A Deep Learning Perspective

Increasing level of detection resolution and difficulty

Pedestrian Body Head Blink Blink Eye Blink Pupil Micro

Detection Pose Pose Rate Duration Pose Dynamics Diameter Saccades
Fxce Face Glance Drowsiness Micro Cognitive

Detition Classification || Classification Glances Load
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Drive State Detection

Source Video Preprocessing
* Challenge: real-world data is “messy”, have Automated
to deal With: Calibration
* Vibration Video
Stabilization
* Lighting variation
Face

* Body, head, eye movement Frontalization

Motion
e Solution: Magnification

e Automated calibration ‘
* Video stabilization (multi-resolutional) Soleoilnhin Raw Features
* Face part frontalization Facial Actions | | PupilArea | lq || Raw Face Image
e Use deep neural networks (DNN) Blink State | | Pupil Position Raw Eye Image

* No feature engineering

* Use raw data ¢ l

Driver State Detection DNN Models

Cog. Load Emotion Gaze Drowsiness
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Emotion Recognition

* Many ways to taxonomize
emotion.

\\ submission

optimism i -__~~Iove
* Example: m
Parrot’s primary emotions: 4
i Love aggressivenessl,’ \ A \ R

* Joy

* Surprise
* Anger
Sadness ——
* Fear

* Two approaches
* General
* Application-specific

y -
-
J- -

remorse =

I II mmm  Massachusetts For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January

Institute of L . h
II TZZ.',,':,.?,;’,, https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018



https://selfdrivingcars.mit.edu/references

Building Blocks: Facial Expressions

e 42 individual facial muscles in the face.

= 2D

m:;f:::‘;?e“s For the full updated list of references visit: [189] MIT 6.5094: Deep Learning for Self-Driving Cars
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General Emotion Recognition
Example: Affectiva SDK

i Bk

Anger Contempt Disgust Fear

€

Sadness Surprise
I II - m:‘sif:::g?eﬁs For the full updated list of references visit: [190] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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General Emotion Recognition
Example: Affectiva SDK

Increase Likelihood

Decrease Likelihood

Joy Smile

Brow Raise
Brow Furrow

Brow furrow
Lid Tighten
Eye Widen
Chin Raise
Mouth Open
Lip Suck

Anger

Nose Wrinkle

Disgust
= Upper Lip Raise

Inner Brow Raise
Brow Raise
Smile

Lip Suck
Smile

Hmm Massachusetts
I I Institute of

For the full updated list of references visit:
Technology [190]

https://selfdrivingcars.mit.edu/references

Lex Fridman
lex.mit.edu
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Application-Specific Emotion Recognition:

Driver Frustration

Class 1: Satisfied with Voice-Based Interaction

Gender:iMale

GlassasiiNe
\ Interocular distane
Mean Foce luminanc

tbrow furrow
:chin raiser
:disqust (image)
ieyes closed
inner brow raise
lip depressor
lip preas

dip pucker

dip raiser

ilip suck

‘mouth open
nose wrinkle

251

:outer brow raise
:gmile
:smirk

) 5¢ W :
\ B ‘< S § : 4
" KPresSsivEness: o ismirk (left)
A - :smirk (right)

Class 2: with Voice-Based Interaction

Gender: Male ID: o :brow furrow
Glosses: Yes F .
Interoculor distance: 164.8
Mean Face luminance: 140.5 .
Pitch angle: 7.
Roll angle
Yow angle:
anger:
contempt:
disgust
fear:
Jjoy:
sadness:
surprise:

xpressiveness: a 1amirk’ (laft)
x ®amirk (right)
L] h_l

:nose wnnkle
‘outergbrowlraise

I II il- m:;::::g?e‘*s For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Emotion Generation
https://agi.mit.edu

e
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Overview

Human Imperfections
Pedestrian Detection
Body Pose Estimation
Face Detection
Glance Classification
Emotion Recognition

Cognitive Load Estimation

Human-Centered Vision for Autonomous Vehicles

:tsi::f:z?e“s For the full updated list of references visit:
chnology https://selfdrivingcars.mit.edu/references
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Human Sensing:
A Deep Learning Perspective

Increasing level of detection resolution and difficulty

Pedestrian Body Head Blink Blink Eye Blink Pupil Micro

Detection Pose Pose Rate Duration Pose Dynamics Diameter Saccades
Face Face Glance Drowsiness Micro Cognitive

Detection | | Classification | |Classification Glances Load
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Eye in Motion:

' 200 !
Saccades . E ‘ms > i Target position

Right /

A
o —Eye position
Y
e Ballistic movements Left
Time

* Can be small or large
(reading vs exploring the room)

* Can be voluntary or reflexive

e During 200ms period: compute the position of target with respect to
fovea and convert to motor command

* The eye movement is 15-100 ms

 If target moves during eye movement, adjustments have to be made
after movement is completed.
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20%s

Eye in Motion: 2
—_ 15%
Smooth s
. % 15
P U rS U Its 3:-:’/ Target movement 10%s
g 10
g Catch-up
& saccade
o \
5 Eye movement
|
0
0 0.5 1.0 1:5

Time (s)

* Slower tracking movements that keep stimulus on the fovea

* Voluntary in that observer can choose whether or not to track
moving stimulus

* Only highly trained observers can make a smooth pursuit movement
in the absence of a moving target

I I I BB Massachusetts MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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. . . . = Human microsaccades (Video tracking)
Motion During Fixation | Erglon 2000
I = Primate microsaccades (Search cail)
é‘ 0.75+ - o Hafed et al., 2009
. — 12 arcmin
* Drifts: 58
slow movements away from fixation point, = E il
20 to 40 Hz 88 |
. . £
* Flicks (microsaccades): S 025
reposition the eye on target, 1 degree max
[ H . 0 4 |
Ocular micro tremors: : o i s =
150-2500nm, 40-100Hz Microsaccade amplitude (arcmin)

: ¢
_‘fiﬂ‘.;

TR
mree (500 FPS) Motion magnified x75 (30-50 Hz)

- Massachusetis MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Cognitive Load Overview
From the Perspective of Computer Vision

* Each of the following bullet points have several papers validating it.

* Pupil equations:
* Brighter light = smaller pupil
* Higher cognitive load = larger pupil

* Blink equations
* Higher cognitive load = slower blink rate
e Higher cognitive load = shorter blink duration

* Questions:
* Which of these metrics can be accurately extracted in real-world driving data?
* Are there other metrics that may work better in such conditions?

sachusetts MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
https://selfdrivingcars.mit.edu lex.mit.edu 2018
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3D Convolutional Neural Networks

temporal

I I I- - m:;fﬂf:';:e“s For the full updated list of references visit: [19 1] MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
I I Technology https://selfdrivingcars.mit.edu/references https://selfdrivingcars.mit.edu lex.mit.edu 2018



https://selfdrivingcars.mit.edu/references

Real-World Data

92 drivers perform “n-back” tasks requiring various levels of
cognitive load:

* 0-back: Say the number right after it’s read
 1-back: Say the number previous to the current one.
e 2-back: Say the number 2 prior to the current one.

Auditory N-Back Task

0-Back
3000 ms 4 RE 3000 ms 4RE 3000 ms 4 CE 3000 ms 4 RE 3000 ms
300 ms 300 ms i | 300 ms | 300 ms = |
t t
Match No-match Match
1-Back
3000 ms 4RE 3000 ms 4CE 3000 ms 4CE 3000 ms 4 PE 3000 ms
300 ms 300 ms ;| 300 ms . | 300 ms |
T
No-maltch Match No-match
2-Back
3000 ms 4 RE 3000ms  §CE 3000 ms 4 RE 3000 ms 4 PE 3000 ms
300 ms 300ms 300 ms e 300 ms B8
t t
Match No-match

352
-
&
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Cognitive Load Estimation

Low CL Medium CL High CL
(0-back) (1-back) (2-back) Extract Pupil N HMM §
Position Model Cognitive Load |
Classification
Decision
Eye Image Sequence 3D-CNN Model :
* 6 seconds, 16 fps, 90 images
* Two approaches: HMM and 3D-CNN
e HMM: Hidden Markov Model
* Input: Sequence of pupil positions
(normalized by intraocular segment)
* 3D-CNN: Three Dimensional
Convolutional Neural Network
* Input: Sequence of raw images of eye region
Mii ™ o pert womng forseforms Gars oo



Dealing with Vibration and Movement

Original Video = AAM Landmarks  Frontalized Video

(Remove effects of head movement)

MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman
https://selfdrivingcars.mit.edu lex.mit.edu



Preprocessing Pipeline

1. Face Detection 2. Face AAM (43 pts) 3. Face Frontalization

Raw + Features

4. Eye Lid AAM (25 pts) 5. Classify Pupil Visibility 6. Pupil AAM (39 pts)

I I I =+ m:;:::::’:eﬁs MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Vertical Pupil Movement (Normalized)

Visualizing the Dataset: Pupil Movement

0-Back (Low Cognitive Load) 1-Back (Medium Cognitive Load) 2-Back (High Cognitive Load)
0.4 0.4 04
=) =)
03 g o3 g o3
T T
0.2 E 02 E 02
o o
< £
0.1 X | = 104
o c
Q Q
o X - £ o0 -
> >
(=} [=}
-0.1 = -01 = 01
= i
=) e |
-0.2 o -p2 Q02
[ [
S kS!
-0.3 5 =03 5 -03
> >
-0.4 -0.4 -0.4
-04 -03 -0.2 0.1 0.0 01 02 03 04 -04 -0.3 -0.2 -0.1 0.0 0.1 02 03 04 -04 -03 -02 -0.1 00 01 02 03 04
Horizontal Pupil Movement (Normalized) Horizontal Pupil Movement (Normalized) Horizontal Pupil Movement (Normalized)

Metric: Pupil position normalized by intraocular distance
Visualization: Kernel density estimation (KDE)
Dataset size: 92 subjects

Takeaway: Observable aggregate differences between all 3 levels

m:ts::::: f e MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Cognitive Load Estimation

Extract Pupil | HMM §
Position Model Cognitive Load |
Classification
Decision |
3D-CNN Model E
Eye Image Sequence | ~~ ~T e |4 |
k5 k5
c c Qo (= = Qo c c c oo
S S = S S = 9 S S = S S x
> = = ) = = o) = = = o c c £
a5 P> o &P oo e o o> o e SH SH S
< > > ! > > ! > > > ! O () =
= = x = = X = = c x o
[e) (o) © (o) o © (@) o) [6) o > > n
o o = o o = (&} (&} o = = =
L L
90 128 128 2X2%2 128 128 2X2%2 128 128 128 2x2%2 1024 1024 3
images, filters, filters, kernel, filters, filters, kernel, filters, filters, filters, kernel, units units classes
1x64x64 3x3x3 3x3x3 2x2x2 3x3x3 3x3x3 2x2x2 3x3x3 3x3x3 3x3x3 2x2x2
kernel kernel stride kernel kernel stride kernel kernel kernel stride
HMM: Hidden Markov Model 3D-CNN: Three Dimensional

. L Convolutional Neural Network
Input: Sequence of pupil positions

(normalized by intraocular distance) Input: Sequence of raw images of eye region
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Driver Cognitive Load Estimation

1.0

0.9

A: 0-back A: 0-back

0.8

0.7

B: 1-back | B: 1-back |-
40.3
410.2

C: 2-back | C: 2-back -
10.1
—0.0

HMM Approach 3D-CNN Approach
Average Accuracy: 77.7% Average Accuracy: 86.1%

I I I el m:‘si:::::g?etts MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
I I Technology https://selfdrivingcars.mit.edu lex.mit.edu 2018



Cognitive Load Estimation:
Open Source = Open Innovation

Implication: Make driver cognitive load estimation accessible

Low
Cognitive Load

Medium
Cognitive Load

Webcam
Video Stream High
Cognitive Load
I I I el :VI:‘s;::::g?etts MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Real-Time Cognitive Load Estimation

A Cognitive Load Estimation y 9 Cognitive Load Estimation Cognitive Load Estimation
Iy \\ Jack Deep Learning i "j e A Julia Deep Learning i ) j‘ Lex Deep Learning i
- DeepCogload - DeepCogload DeepCogload

a7 e -y .

ﬁ(m‘ "T
CONVERSATION MEDIUM CONVERSATION HIGH CONVERSATION HIGH

Institute of )
Tgcszl:nili;y https://selfdrivingcars.mit.edu lex.mit.edu 2018
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Overview

Human Imperfections
Pedestrian Detection
Body Pose Estimation
Face Detection
Glance Classification
Emotion Recognition

Cognitive Load Estimation

Human-Centered Vision for Autonomous Vehicles

:tsi::f:z?e“s For the full updated list of references visit:
chnology https://selfdrivingcars.mit.edu/references
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Human-Centered Artificial Intelligence Approach

00% —2 Human Y& 440,

Needed

Solve the perception-control And where not possible:
problem where possible: involve the human
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Human at the Center of Automation:
The Way to Full Autonomy Includes the Human

Fully Fully
Human Machine
Controlled Controlled

Ford F150 Tesla Model S
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Testing Dataset

Testing Dataset

Training Dataset

I SR Massachusetis MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
I I 423.'.‘1'3?,3; https://selfdrivingcars.mit.edu lex.mit.edu 2018



Human-Centered Autonomy

* A self-driving car may be more a Personal Robot and less
a perfect Perception-Control system. Why:

* Flaws need humans: The scene understanding problem
requires much more than pixel-level labeling

e Exist with humans: Achieving both an enjoyable and safe
driving experience may require “driving like a human”.

* Quite possibly, the first wide reaching and profound
integration of personal robots in society.

* Wide reaching: 1 billion cars on the road.

* Profound: Human gives control of his/her life directly to
robot.

* Personal: One-on-one relationship of communication,
collaboration, understanding and trust.

I II - m:tsif:t‘:';fe“s For the full updated list of references visit: MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Human (and Machine) Imperfections

e “People call these things
imperfections, but they’re not. That's
the good stuff...”

* “And then we get to choose who we let
in to our weird little worlds. You're not
perfect, sport. And let me save you the
suspense. This girl you met, she isn't
perfect either. But the question is:
whether or not you're perfect for each
other. That's the whole deal. That's
what intimacy is all about...”

* “Now you can know everything in the
world, sport, but the only way you're
finding out that one is by giving it a
shot.”

I I I I I MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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Human-Centered Autonomous Vehicle
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CHI 2018 Course:
Deep Learning for Understanding the Human

e Part 1 (80 minutes)
* Introduction to Deep Learning
r * Theory, insights, and intuitions
J C H I 2 0 1 8 * Tools to get started applying DL to various domains
* Convolutional Neural Networks

Engage Wlth CHl * Face recognition

* Eye tracking
* Cognitive load estimation
* Emotion recognition

* Part 2 (80 minutes)

* Recurrent Neural Networks
* Natural Language Processing
* Voice Recognition

* Mixing Convolutional and Recurrent Neural Networks
* Activity recognition

* Part 3 (80 minutes)

* Generative Neural Networks
* Speech Synthesis

* Peripheral Vision Visualization

I I I el m:;f:f:g?e“s MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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HellO UAVER

Mon. Jan 22
Tpm, 54-100

Tue.Jan 23
Tpm, 54-100

Wed. Jan 24

Thu.Jan 25
7pm, 54-100

Fri,Jan 26
Tpm, 54-100

Mon. Jan 29
Mon, Jan 29
Tpm, 54-100

Tue,Jan 30
7pm, 54-100

Wed, Jan 31
7pm, 54-100

Thu,Feb1
Tpm, 54-100

Fri,Feb 2
7pm, 54-100

6.5099
Lex Fridman, MIT Artificial

Artificial General Intelligence

General
JoshT b . MIT .
=St . Intelligence

agi.mit.edu

Ray Kurzweil, Google
How to Create a Mind

Lisa Feldman Barrett, NEU

Emotion Creation

Nate Derbinsky, NEU

Cognitive Modeling

Andrej Karpathy. Tesla

Deep Learning

Stephen Wolfram, Wolfram Research
Knowledge-Based Programming

Richard Moyes, Article36

Al Safety: Autonomous Weapon Systems

Marc Raibert, Boston Dynamics
Robots That Work in the Real World

Ilya Sutskever. OpenAl

Deep Reinforcement Learning

Lex Fridman, MIT

Human-Centered Artificial Intelligence




DeepTraffic

What Next?

* Competitions

o 55 gl = * Ongoing until May 2018. Results, insights = NIPS 2018
' o » DeepTraffic: https://selfdrivingcars.mit.edu/deeptraffic
" i e
T W ST e » SegFuse: https://selfdrivingcars.mit.edu/segfuse
o liiiﬁiiiiﬁi Ei il .. .
- il il » DeepCrash: https://selfdrivingcars.mit.edu/deepcrash

* Upcoming MIT Courses:

* 6.5099: Artificial General Intelligence
https://agi.mit.edu

* 6.5191: Introduction to Deep Learning:
http://introtodeeplearning.com

e 15.514: Global Business of Al & Robotics
http://tiny.cc/gbairl8

Learning Episode 200

 If you're interested in the application of deep
learning in the automotive space, come do
research with us: https://hcai.mit.edu/join
(opens in Feb 2018)

Institute of MIT 6.5094: Deep Learning for Self-Driving Cars Lex Fridman January
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https://agi.mit.edu/
http://introtodeeplearning.com/
http://tiny.cc/gbair18
https://hcai.mit.edu/join
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