6.S094: Deep Learning for Self-Driving Cars 2018

https://<mark>selfdrivingcars.mit.edu</mark> Lex Fridman

Lecture 5: Deep Learning for Human Sensing

MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fridman https://selfdrivingcars.mit.edu lex.mit.edu January 2018

最专业报告分享群:

•每日分享5+科技行业报告

- 同行业匹配,覆盖人工智能、大数据、机器人、 智慧医疗、智能家居、物联网等行业。
- 高质量用户,同频的人说同样的话

扫描右侧二维码, 或直接搜索关注公众号: 智东西(zhidxcom) 回复"报告群"加入

Deep Learning for Human Sensing

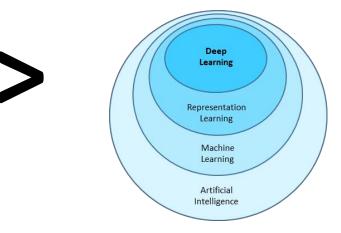
- Requirements for success (from more to less critical)
 - Data: A lot of real-world data (and algorithms that learn from data)
 - Semi-supervised: Human annotations of representative subsets of data
 - Efficient annotation: Specialized annotation tooling
 - Hardware: Large-scale distributed compute and storage
 - Robustness: Algorithms that don't need calibration (learn the calibration)
 - Temporal dynamics: Algorithms that consider time
- Current importance relation for successful application of deep learning:

istitute of

chnology

Good Algorithms*

* As long as they learn from data



Overview

- Human Imperfections
- Pedestrian Detection
- Body Pose Estimation
- Glance Classification
- Emotion Recognition
- Cognitive Load Estimation
- Human-Centered Vision for Autonomous Vehicles

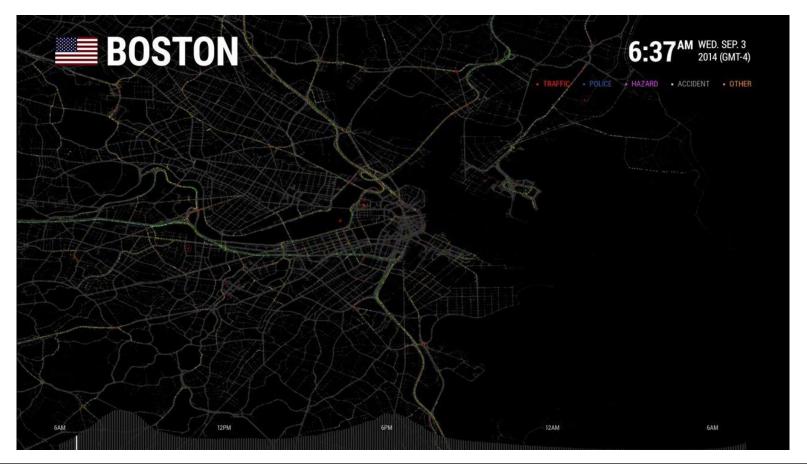
Humans Are Amazing

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu Lex Fridman January lex.mit.edu 2018

Humans Are Amazing

- 3.22 trillion miles (US, 2016)
- 40,200 fatalities (US, 2016)
- 1 fatality per 80 million miles
- 1 in 625 chance of dying in car crash (in your lifetime)



For the full updated list of references visit: https://selfdrivingcars.mit.edu/references Lex Fridman January lex.mit.edu 2018

Humans are Flawed

What is distracted driving?

- Texting
- Using a smartphone
- Eating and drinking
- Talking to passengers
- Grooming
- Reading, including maps
- Using a navigation system
- Watching a video
- Adjusting a radio

• Injuries and fatalities:

3,179 people were killed and 431,000 were injured in motor vehicle crashes involving distracted drivers (in 2014)

• Texts:

169.3 billion text messages were sent in the US every month.(as of December 2014)

• Eye off road:

5 seconds is the average time your eyes are off the road while texting. When traveling at 55mph, that's enough time to cover the length of a football field blindfolded.

Humans are Flawed

- **Drunk Driving:** In 2014, 31 percent of traffic fatalities involved a drunk driver.
- **Drugged Driving:** 23% of night-time drivers tested positive for illegal, prescription or over-the-counter medications.
- **Distracted Driving:** In 2014, 3,179 people (10 percent of overall traffic fatalities) were killed in crashes involving distracted drivers.
- **Drowsy Driving:** In 2014, nearly three percent of all traffic fatalities involved a drowsy driver, and at least 846 people were killed in crashes involving a drowsy driver.

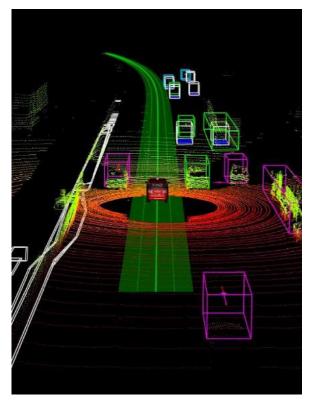
Two Paths to an Autonomous Future

A1:

Human-Centered Autonomy

- Localization and Mapping: Where am I?
- Scene Understanding: Where/who/what/why of everyone else?
- Movement Planning: How do I get from A to B?
- Human-Robot Interaction: What is the physical and mental state of the driver?
- **Communicate:** How to I convey intent to the driver and to the world?

Blue Text: Easier Red Text: Harder



A2: Full Autonomy

- Localization and Mapping: Where am I?
- Scene Understanding: Where/who/what/why of everyone else?
- Movement Planning: How do I get from A to B?
- Human-Robot Interaction: What is the physical and mental state of the driver?
- Communicate: How to I convey intent to the driver and to the world?

Is partially automated driving a bad idea? Observations from an onroad study

Article · April 2018 with 447 Reads DOI: 10.1016/j.apergo.2017.11.010

▲ Cite this publication

Victoria Banks II 14.44 · University of Southampton

Jim O'donoghue

Alexander Eriksson I 11.13 · Swedish National Road and Transport Research Inst...

Neville A Stanton "I 43.23 · University of Southampton

Chris Urmson

January

2018

Public Perception of What Drivers Do in Semi-Autonomous Vehicles

man January edu 2018

Public Perception of What Drivers Do in Semi-Autonomous Vehicles

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman lex.mit.edu

AUDIOSI

COM

January 2018

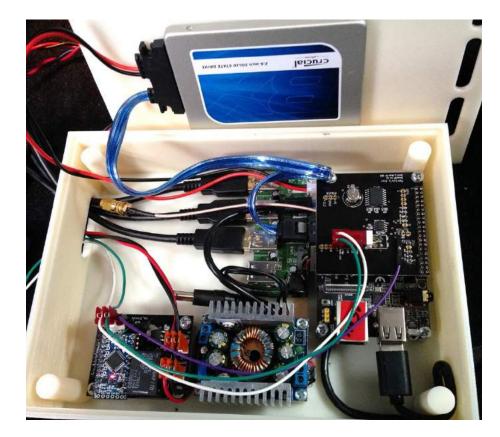
MIT-AVT Naturalistic Driving Dataset

Vehicles instrumented: 25

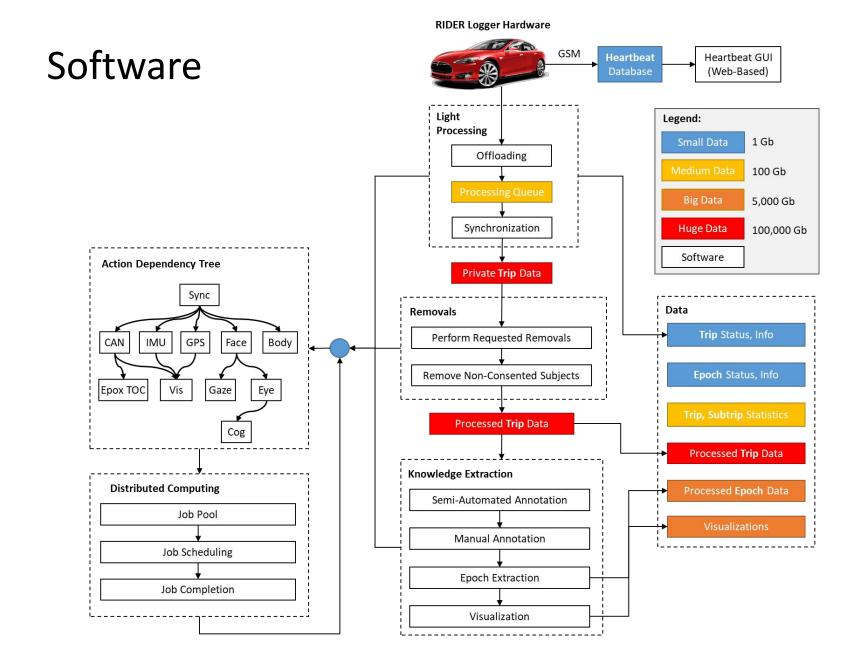
Distance traveled: 275,000+ miles

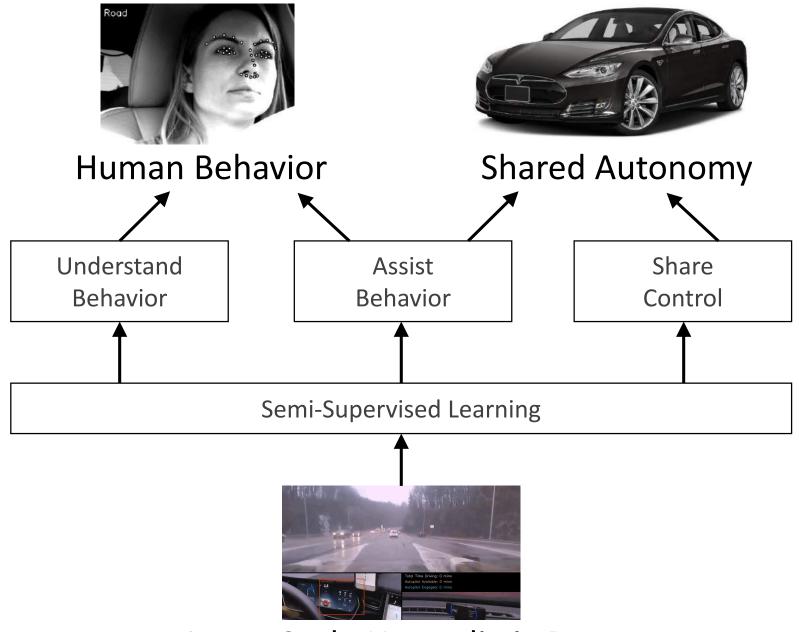
Video frames: 4.7+ billion

Hardware



January <mark>2018</mark>





Large-Scale Naturalistic Data

Lex Fridman January lex.mit.edu 2018

MIT-AVT Naturalistic Driving Dataset

MIT Autonomous Vehicle Technology Study

Study months to-date: 21 Participant days: 7,146 Drivers: 78 Vehicles: 25 Miles driven: 275.589 Video frames: 3.48 billion

Study data collection is ongoing. Statistics updated on: Oct 23, 2017.

Tesla Model S 14,117 miles 248 days in study

Tesla Model S 5.186 miles 91 days in study

Tesla Model S 24.657 miles 588 days in study

Tesla Model S

353 days in study

Tesla Model X

276 days in study

15.074 miles

Volvo S90

13,970 miles

325 days in study

18,666 miles

Tesla Model X 22.001 miles 421 days in study

Range Rover

18,130 miles

Range Rover

14,499 miles

440 days in study

Tesla Model S

321 days in study

Tesla Model S

374 days in study

Tesla Model S

132 days in study

4.596 miles

8,319 miles

12,353 miles

483 days in study

Evoque

Evoque

Tesla Model S 18.896 miles 435 days in study

Tesla Model S 15,735 miles 322 days in study

Tesla Model S 371 days in study

11.072 miles 412 days in study

Tesla Model S 6,720 miles 194 days in study

Tesla Model X 4.587 miles 233 days in study

Tesla Model S (Offload pending)

Lex Fridman January lex.mit.edu 2018

Tesla Model S 9,188 miles 183 days in study

Tesla Model X 5.111 miles 232 days in study

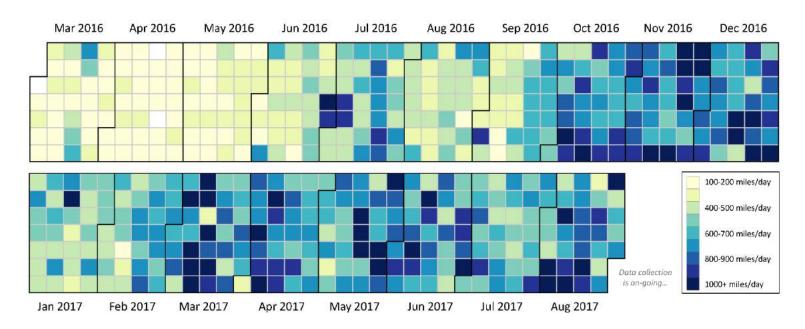
Tesla Model S

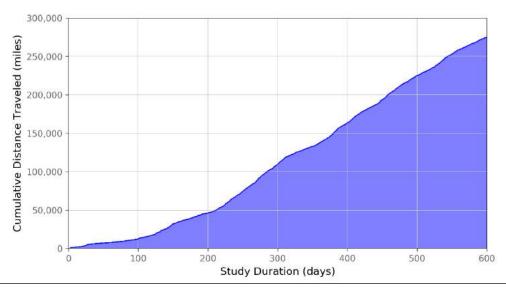
144 days in study

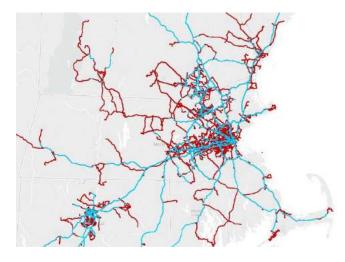
3,006 miles

Tesla Model X 1,306 miles 69 days in study

500+ Miles / Day and Growing



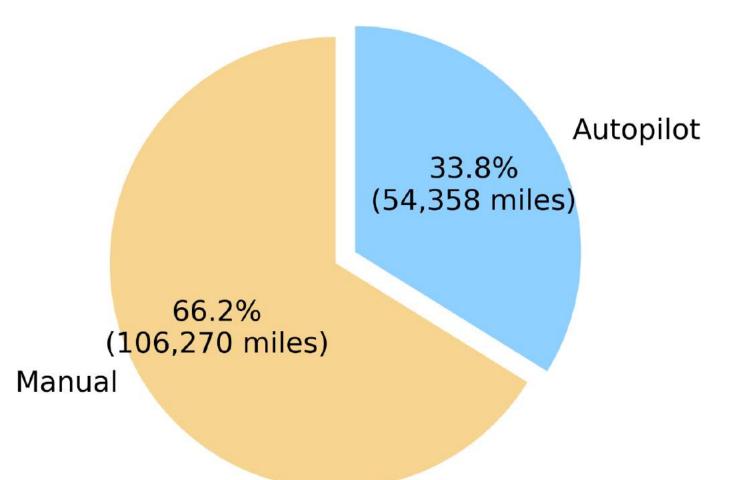




Massachusetts Institute of Technology January

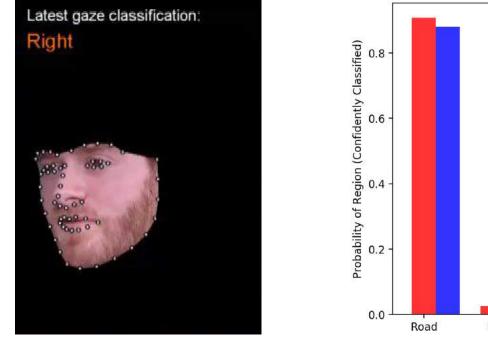
2018

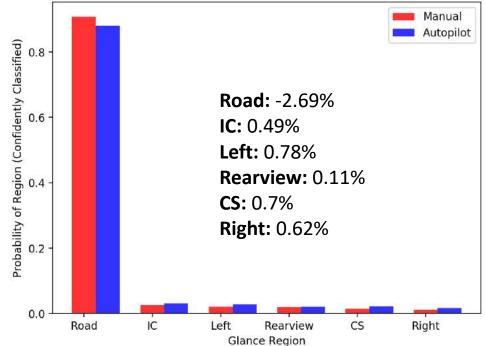
Tesla Autopilot: Patterns of Use



33.8% of the miles driven are with Autopilot engaged

Physical Engagement: Glance Classification





Semi-Autonomous Driving: Observed Patterns of Behavior

• The "how" of successful human-robot interaction: Use but Don't Trust.

• The "why" of successful human-robot interaction: Learn Limitations by Exploring.

Deep Learning for Human Sensing

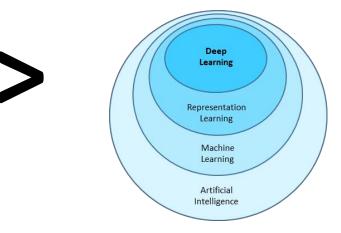
- Requirements for success (from more to less critical)
 - Data: A lot of real-world data (and algorithms that learn from data)
 - Semi-supervised: Human annotations of representative subsets of data
 - Efficient annotation: Specialized annotation tooling
 - Hardware: Large-scale distributed compute and storage
 - Robustness: Algorithms that don't need calibration (learn the calibration)
 - Temporal dynamics: Algorithms that consider time
- Current importance relation for successful application of deep learning:

istitute of

chnology

Good Algorithms*

* As long as they learn from data

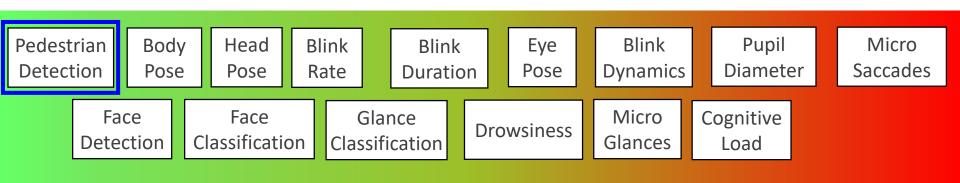


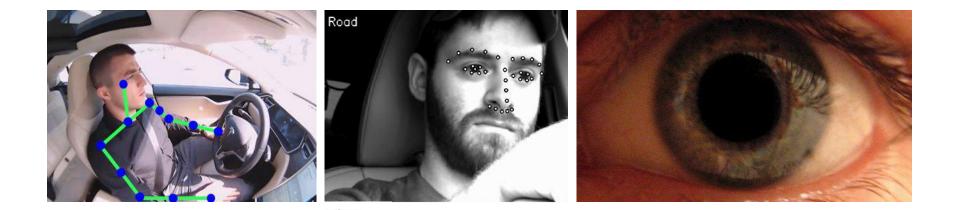
Overview

- Human Imperfections
- Pedestrian Detection
- Body Pose Estimation
- Glance Classification
- Emotion Recognition
- Cognitive Load Estimation
- Human-Centered Vision for Autonomous Vehicles

Human Sensing: A Deep Learning Perspective

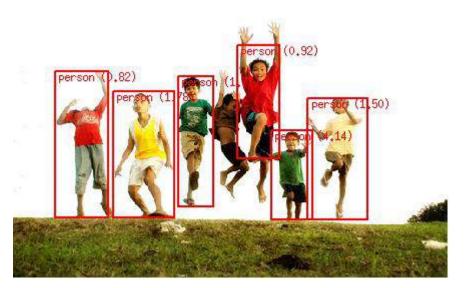
Increasing level of detection resolution and difficulty





Pedestrian Detection

- The usual challenges, e.g.: ٠
 - Various style of clothing in appearance ٠
 - Different possible articulations ٠
 - The presence of occluding accessories ٠
 - Frequent occlusion between pedestrians ٠
- History of object detection
 - Sliding window
 - Haar Cascades
 - **Histogram of Oriented Features** ٠
 - CNN •
 - R-CNN, Fast R-CNN, Faster R-CNN ٠
 - Mask RCNN (adds segmentation) ٠
 - VoxelNet (detection in 3D space) ٠

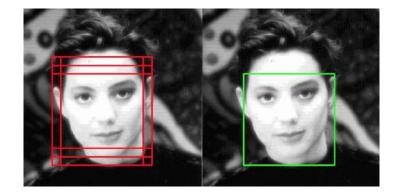


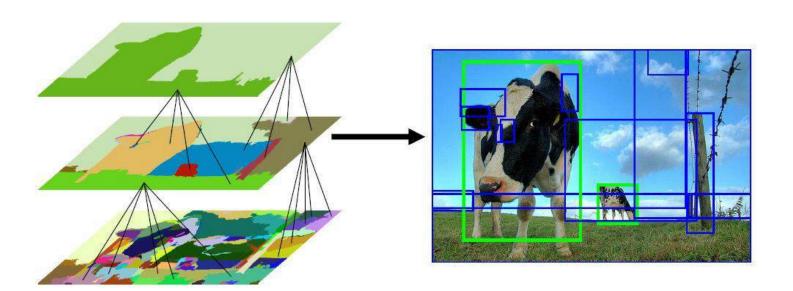
[183, 185]

Lex Fridman January lex.mit.edu 2018

R-CNN: Regions with CNN Features

- Simple algorithm
 - Extract region proposals (selective search)
 - Use CNN on each one (w/ non-maximum suppression)





^{it:} [186, 187]

Lex Fridman January lex.mit.edu 2018

- Per 10 hours (1 recording day)
 - 12,000 pedestrians
 - 21,600,000 samples of feature vector

Sony FDR-AX53

ZED Stereo Camera

Gear 360 Camera

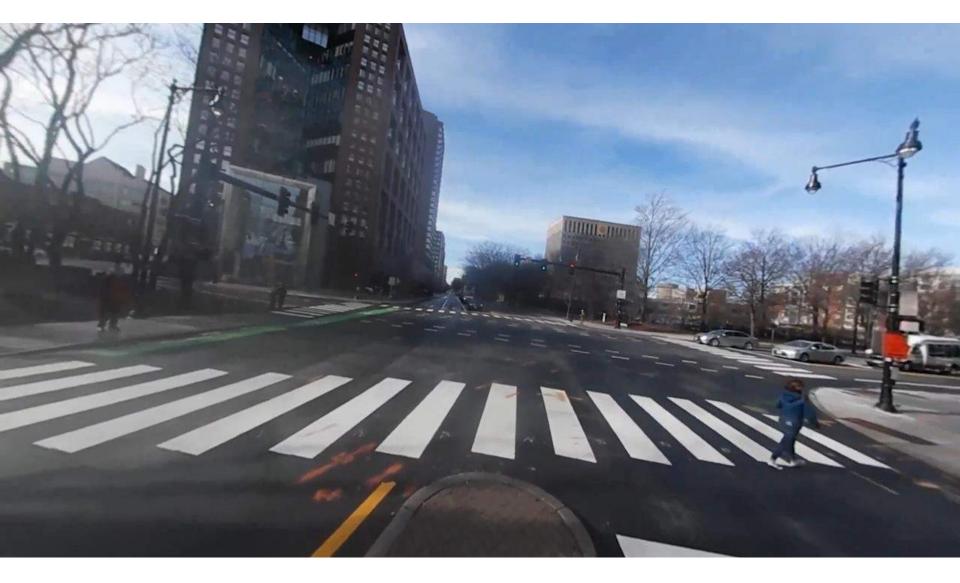
GoPro Hero4

Velodyne VLP-16

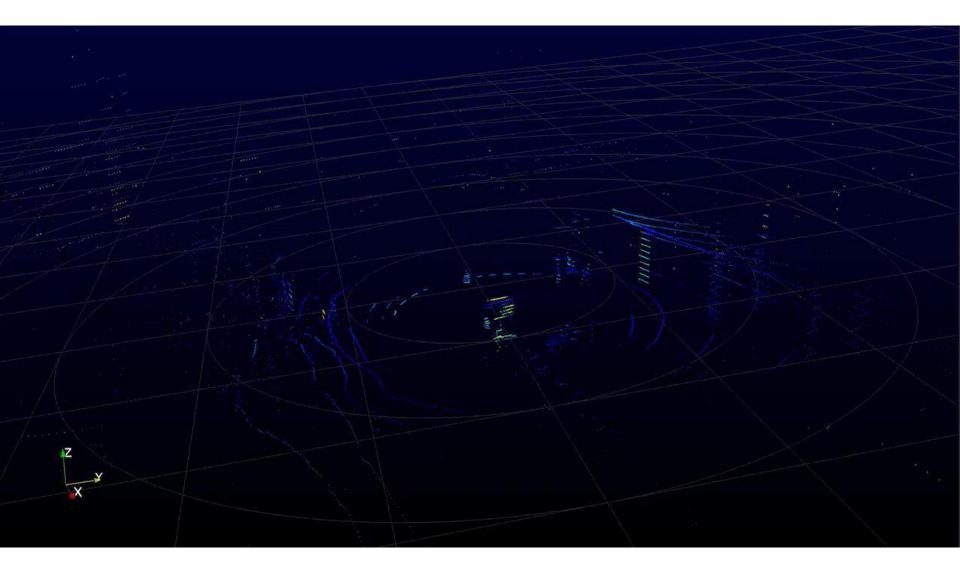
Velodyne HDL-64E

January

2018



January <mark>2018</mark>

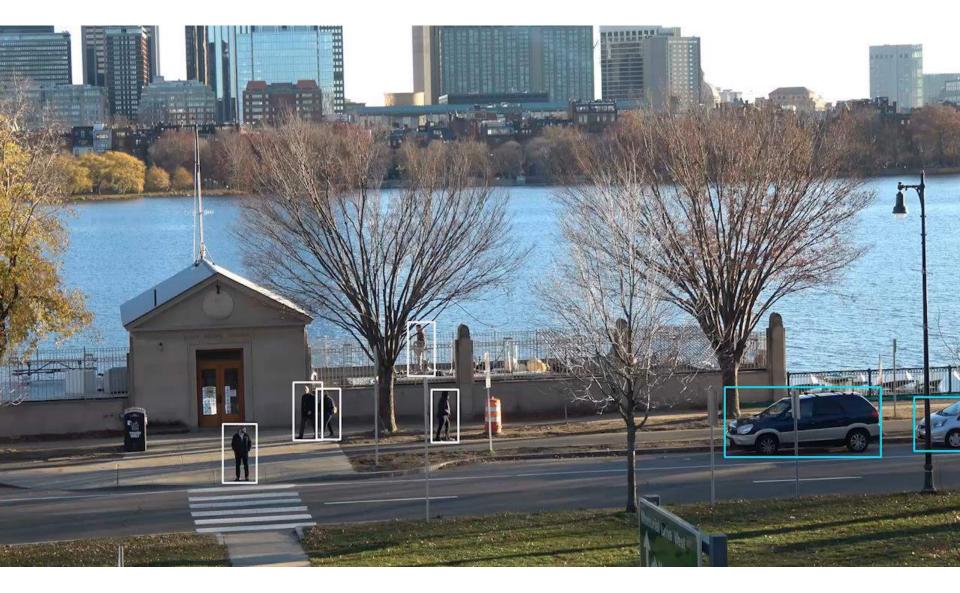


January 2018

January

2018

Pedestrian Detection

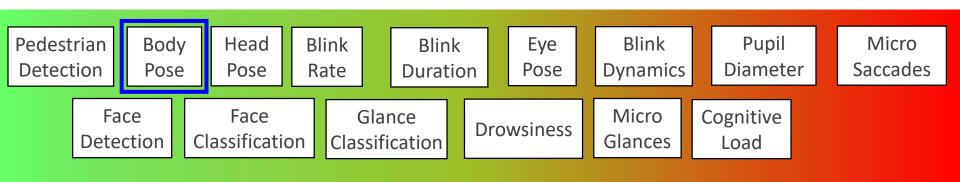


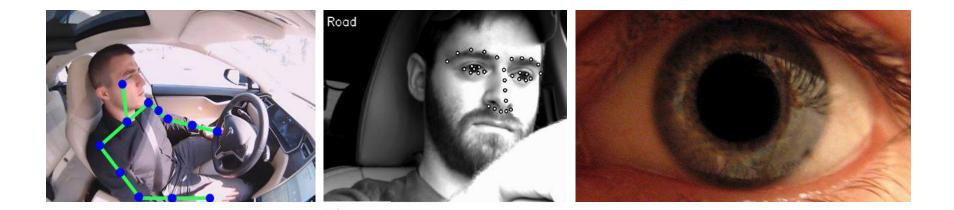
Overview

- Human Imperfections
- Pedestrian Detection
- Body Pose Estimation
- Glance Classification
- Emotion Recognition
- Cognitive Load Estimation
- Human-Centered Vision for Autonomous Vehicles

Human Sensing: A Deep Learning Perspective

Increasing level of detection resolution and difficulty

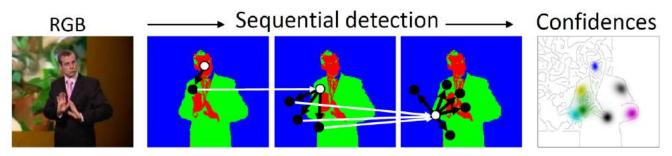




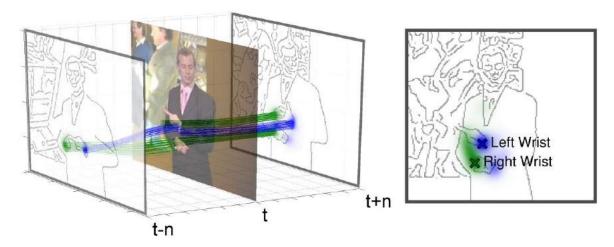
- Pattern of body movement
 - Vertical position in seat
 - General movement
- Beyond body movemnet
 - Smartphone
 - Hands on wheel
 - Activity
 - Context for DeepGlance

Sequential Detection Approach

Sequential Upper Body Pose Estimation:



Temporal Fusion of Localized Confidences:



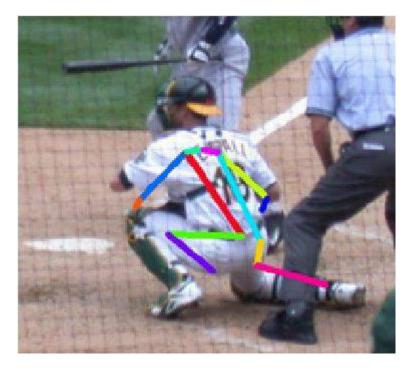
Charles, James, et al. "Upper body pose estimation with temporal sequential forests." *Proceedings of the British Machine Vision Conference 2014*. BMVA Press, 2014.

Massachusetts Institute of Technology For the full updated list of references visit: https://selfdrivingcars.mit.edu/references January

2018

DeepPose: Holistic View

- Why holistic reasoning?
 - Besides extreme variability in articulations, many of the joints are barely visible

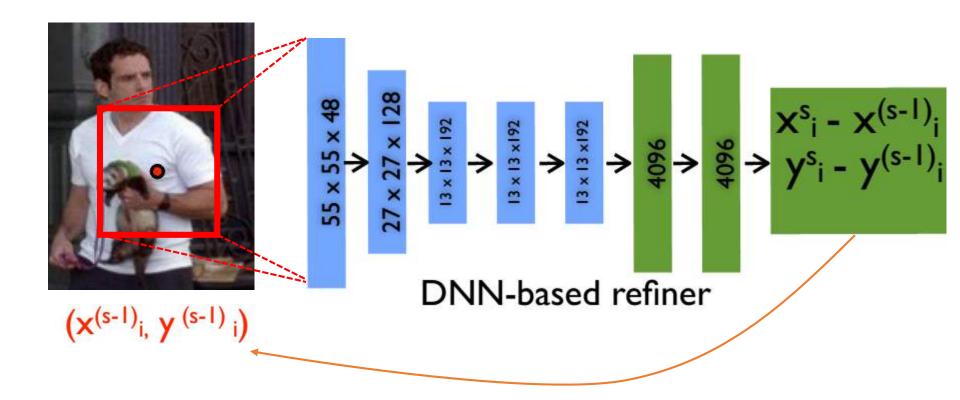


For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman January lex.mit.edu 2018

Cascade of Pose Regressors



Massachusetts Institute of Technology For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu Lex Fridman January lex.mit.edu 2018

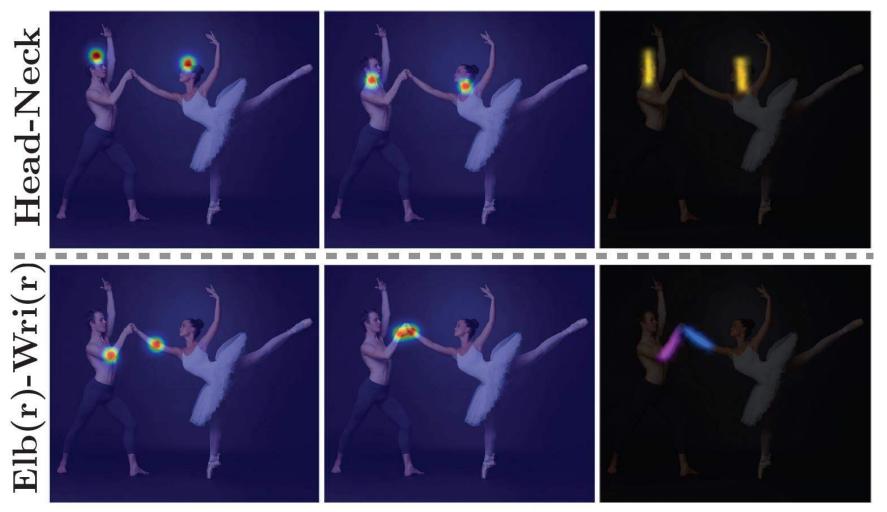
Part Detection

(a) Input image

(b) Confidence maps

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fridman https://selfdrivingcars.mit.edu lex.mit.edu January 2018

Assemble Parts: Part Affinity Fields

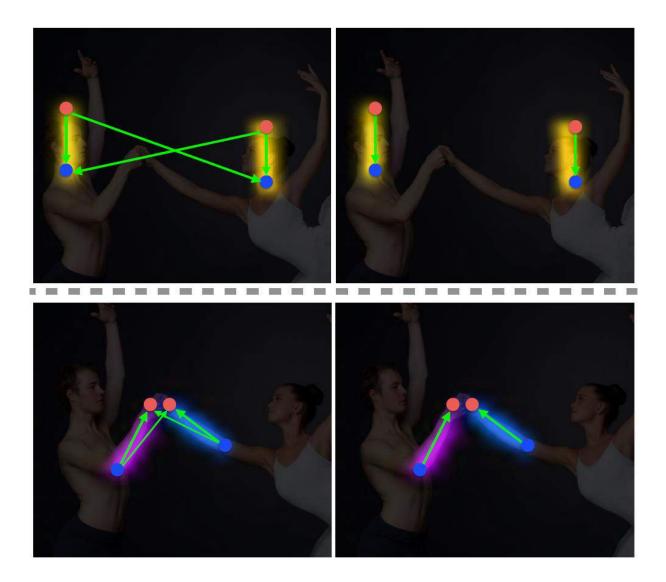


(b) Confidence maps

Massachusetts Institute of Technology For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman January lex.mit.edu 2018

Bipartite Matching



For the full updated list of references visit: <u>https://selfdrivingcars.mit.edu/references</u>

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu Lex Fridman January lex.mit.edu 2018

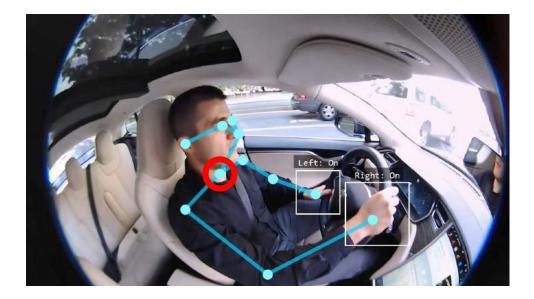
Temporal Convolutional Neural Networks



Pfister, Tomas, James Charles, and Andrew Zisserman. "Flowing convnets for human pose estimation in videos." *Proceedings of the IEEE International Conference on Computer Vision*. 2015.

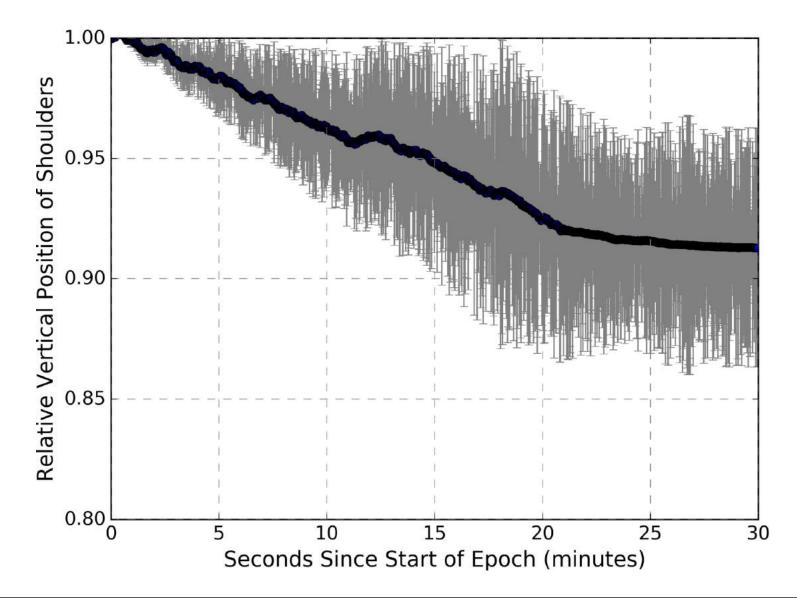
 Massachusetts Institute of Technology
 For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

Body Pose Estimation

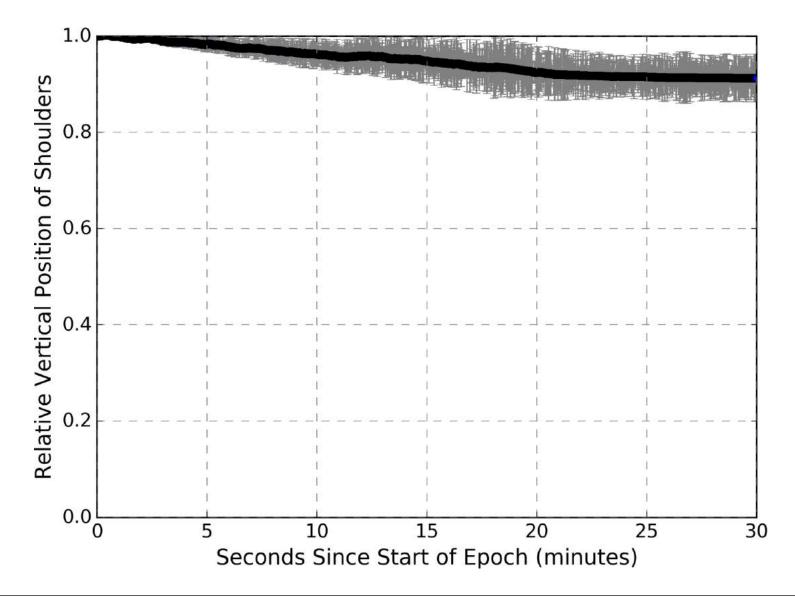


Lex Fridman January lex.mit.edu 2018

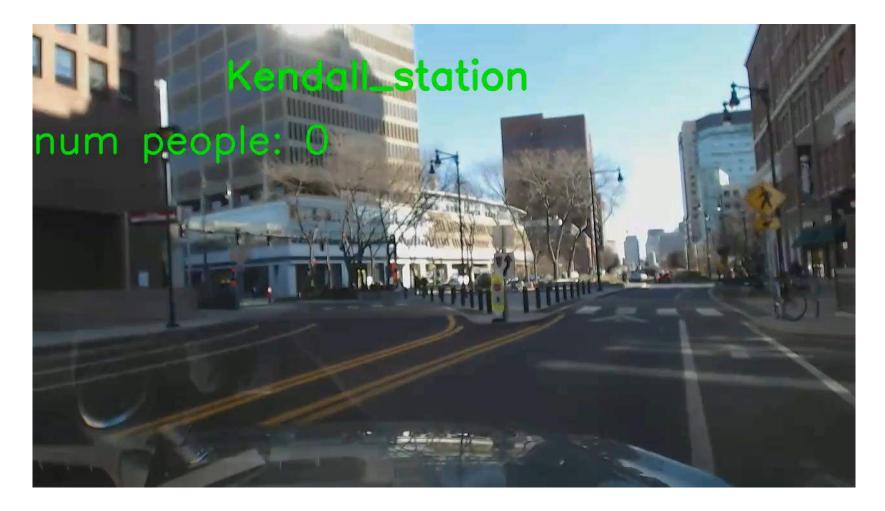
Body Pose: 20 Epochs (30 minutes each)



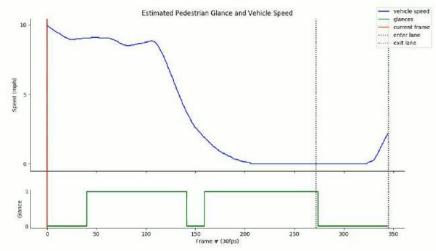
Body Pose: 20 Epochs (30 minutes each)



Pose Estimation (Outside Vehicle Perspective)

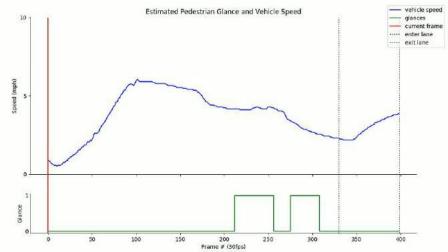


MIT Pedestrian Dataset

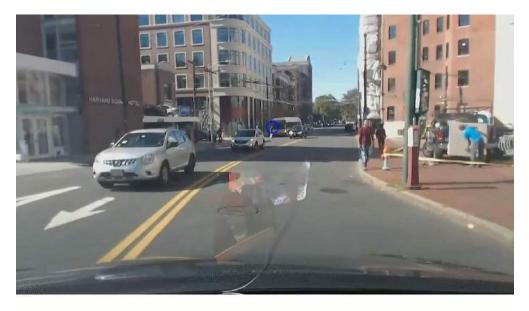


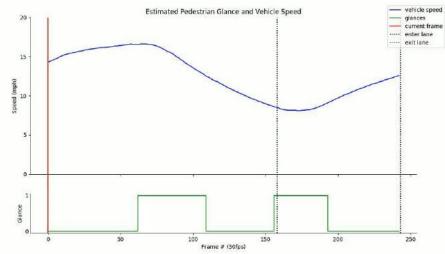
MIT Pedestrian Dataset





MIT Pedestrian Dataset





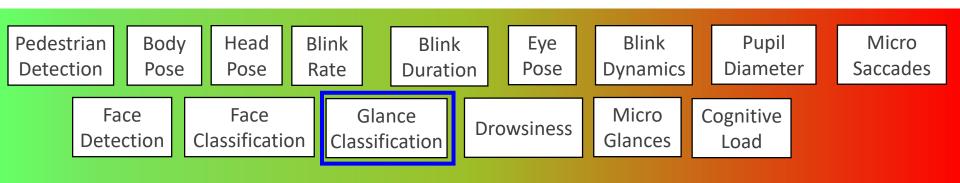
MIT 6.S094: Deep Learning for Self-Driving CarsLex FridmanJanuaryhttps://selfdrivingcars.mit.edulex.mit.edu2018

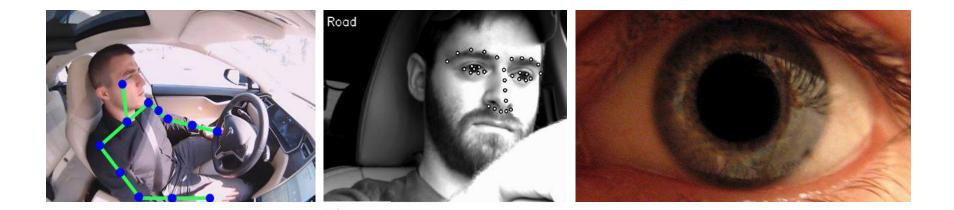
Overview

- Human Imperfections
- Pedestrian Detection
- Body Pose Estimation
- Glance Classification
- Emotion Recognition
- Cognitive Load Estimation
- Human-Centered Vision for Autonomous Vehicles

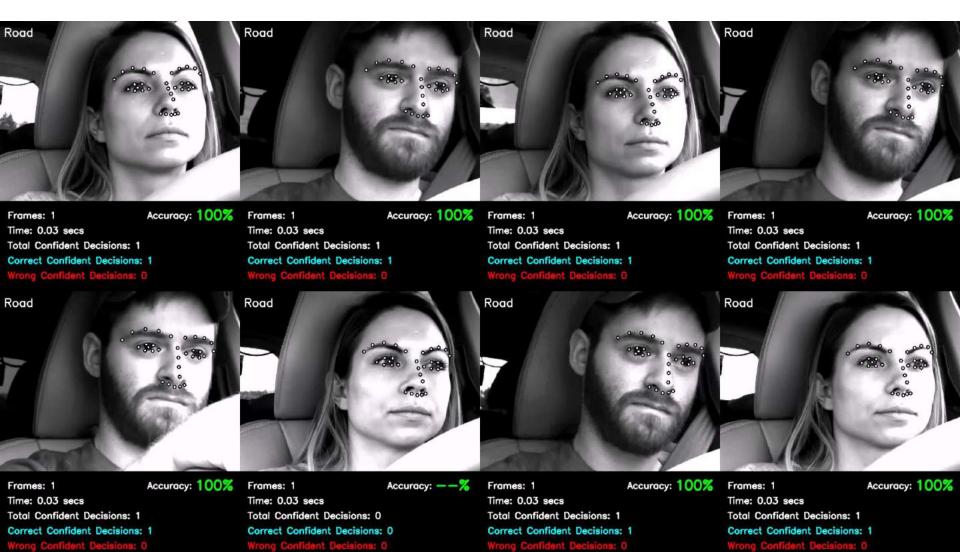
Human Sensing: A Deep Learning Perspective

Increasing level of detection resolution and difficulty





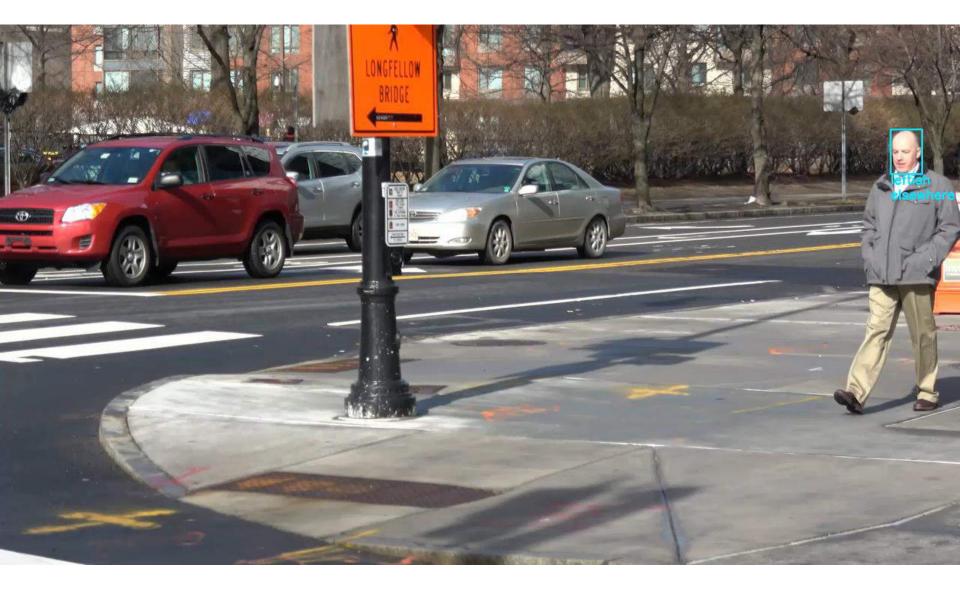
Glance Classification vs Gaze Estimation



Massachusetts Institute of Technology

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu Lex Fridman January lex.mit.edu 2018

Pedestrian Glance Classification



Drive State Detection

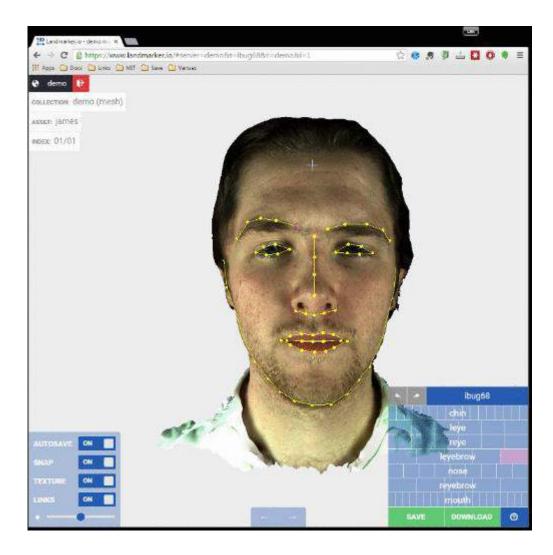
- **Challenge:** real-world data is "messy", have to deal with:
 - Vibration
 - Lighting variation
 - Body, head, eye movement

• Solution:

- Automated calibration
- Video stabilization (multi-resolutional)
- Face part frontalization
- Use deep neural networks (DNN)
 - No feature engineering
 - Use raw data



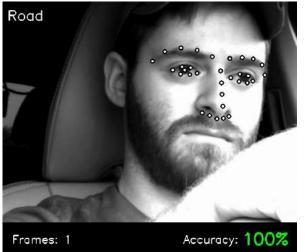
Face Alignment



- Landmarker.io
 - Imperial College London
- Face in the Wild Challenge
 - XM2VTS
 - FRGC Ver.2
 - LFPW
 - HELEN
 - AFW
 - IBUG
- New Datasets
 - MPIIGaze
 - Columbia Gaze
 - 300VW

Gaze Classification Pipeline

- 1. Face detection (the only easy step)
- 2. Face alignment (active appearance models or deep nets)
- 3. Eye/pupil detection (are the eyes visible?)
- 4. Head (and eye) pose estimation (+ normalization)
- 5. Classification (*supervised learning = improves from data*)
- 6. Decision pruning *(how confident is the prediction)*



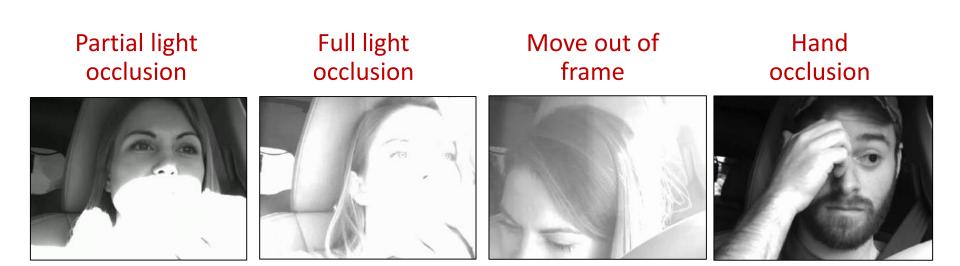
Time: 0.03 secs Total Confident Decisions: 1 Correct Confident Decisions: 1 Wrong Confident Decisions: 0

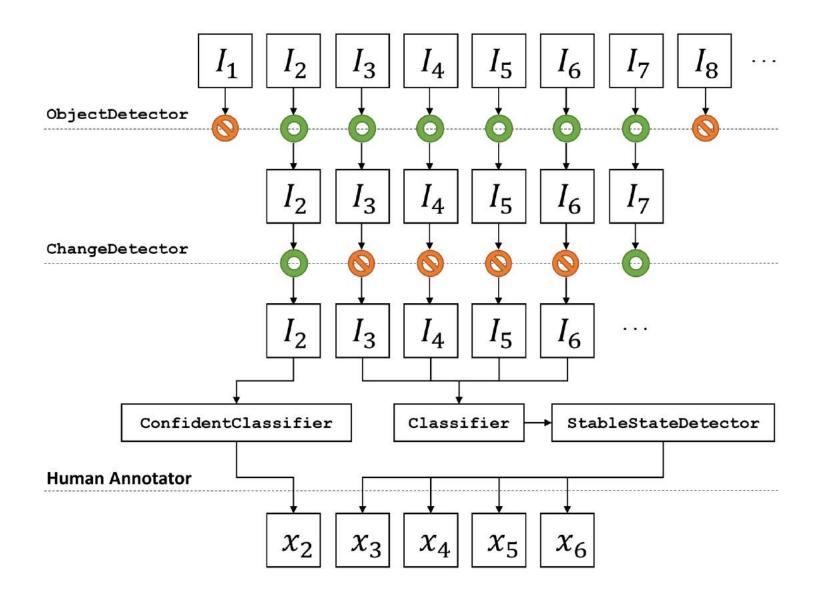
Frames: 1 Accuracy: 100% Time: 0.03 secs Total Confident Decisions: 1 Correct Confident Decisions: 1 Wrong Confident Decisions: 0

Annotation Tooling

"Semi-automated":

Ask a human for help with annotation when the machine is not confident.



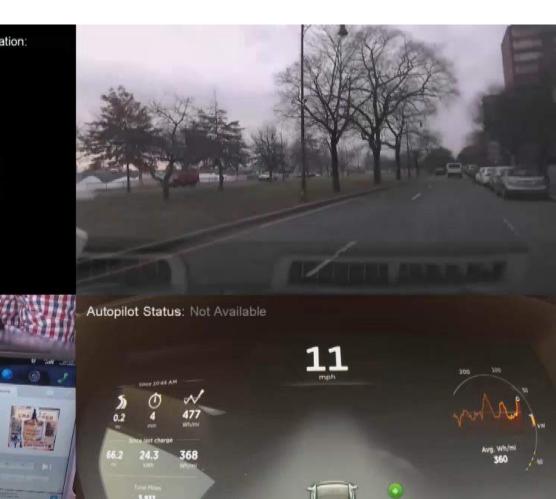


Semi-Automated Annotation Work Flow

* Human in **red** and machine in **blue**

- 1. Select and load in video of driver face.
- 2. Detect face: have we seen this person before?
- 3. Localize camera: have we seen this angle before?
- 4. Provide tradeoff between accuracy and percent frames.
- 5. Select target accuracy: 95%, 99%, or 99.9%
- 6. Perform gaze classification on full video (1 hour per 1 hour of video)
- 7. Step through and annotate the frames machine did not classify.
- 8. (Optional) Re-run steps 6 and 7.
- 9. Enjoy fully annotated video!

Real-Time Glance Classification



Massachusetts Institute of Technology 44 mi

Lex Fridman January lex.mit.edu 2018

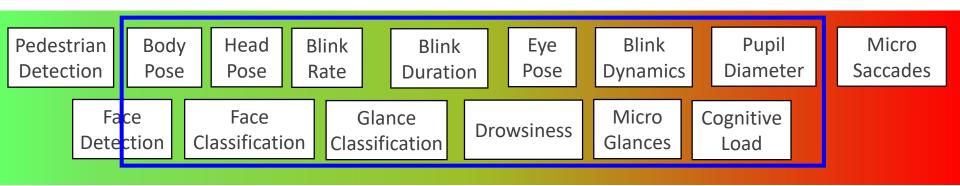
PRND

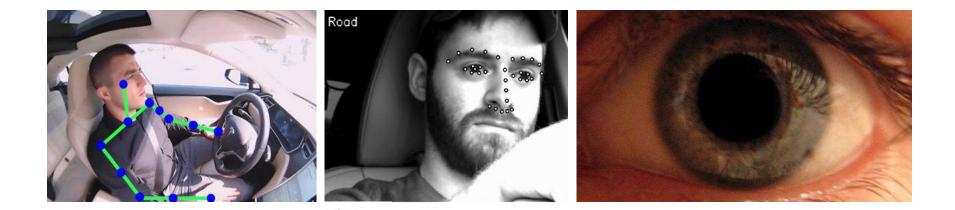
Overview

- Human Imperfections
- Pedestrian Detection
- Body Pose Estimation
- Glance Classification
- Emotion Recognition
- Cognitive Load Estimation
- Human-Centered Vision for Autonomous Vehicles

Human Sensing: A Deep Learning Perspective

Increasing level of detection resolution and difficulty





Drive State Detection

- **Challenge:** real-world data is "messy", have to deal with:
 - Vibration
 - Lighting variation
 - Body, head, eye movement

• Solution:

- Automated calibration
- Video stabilization (multi-resolutional)
- Face part frontalization
- Use deep neural networks (DNN)
 - No feature engineering
 - Use raw data

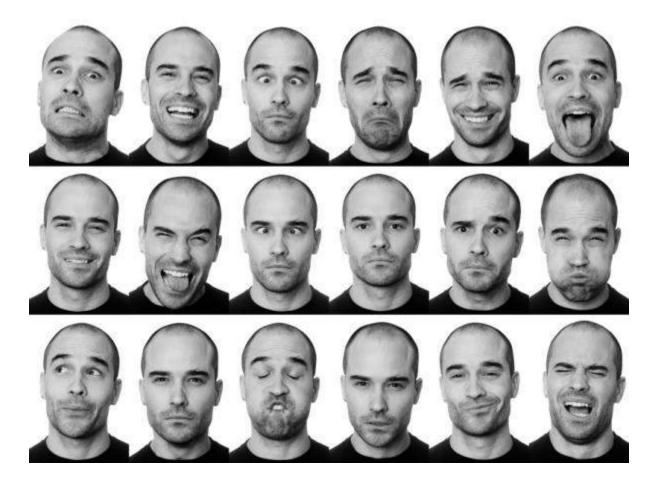


Emotion Recognition

- love optimism serenity interest acceptance joy anticipation trust aggressiveness submission ecstasy vigilance admiration annoyance apprehension amazement contempt awe disgust surprise sadness boredom distraction pensiveness remorse disapproval
- Many ways to taxonomize emotion.
- Example: Parrot's primary emotions:
 - Love
 - Joy
 - Surprise
 - Anger
 - Sadness
 - Fear
- Two approaches
 - General
 - Application-specific

Building Blocks: Facial Expressions

• 42 individual facial muscles in the face.



For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

General Emotion Recognition *Example: Affectiva SDK*

Anger

Contempt

Disgust

Fear

Joy

Sadness

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

General Emotion Recognition Example: Affectiva SDK

Emotion	Increase Likelihood	Decrease Likelihood
Јоу	Smile	Brow Raise Brow Furrow
Anger	Brow furrow Lid Tighten Eye Widen Chin Raise Mouth Open Lip Suck	Inner Brow Raise Brow Raise Smile
Disgust	Nose Wrinkle Upper Lip Raise	Lip Suck Smile

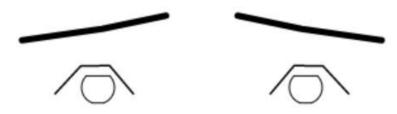
Application-Specific Emotion Recognition: Driver **Frustration**

Class 1: Satisfied with Voice-Based Interaction

Class 2: Frustrated with Voice-Based Interaction

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fridman https://selfdrivingcars.mit.edu lex.mit.edu

nan January du 2018 Emotion Generation https://agi.mit.edu



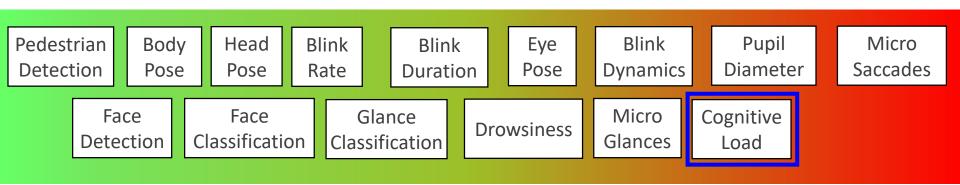
For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fridman January https://selfdrivingcars.mit.edu lex.mit.edu 2018

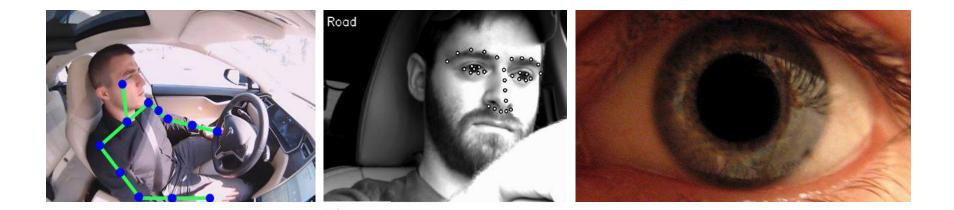
Overview

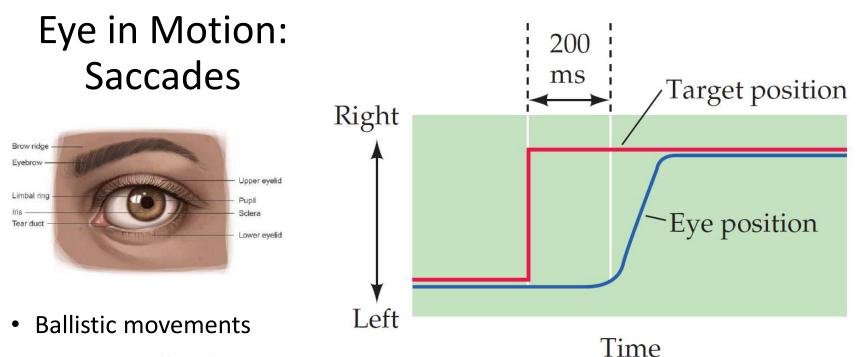
- Human Imperfections
- Pedestrian Detection
- Body Pose Estimation
- Face Detection
- Glance Classification
- Emotion Recognition
- Cognitive Load Estimation
- Human-Centered Vision for Autonomous Vehicles

Human Sensing: A Deep Learning Perspective

Increasing level of detection resolution and difficulty

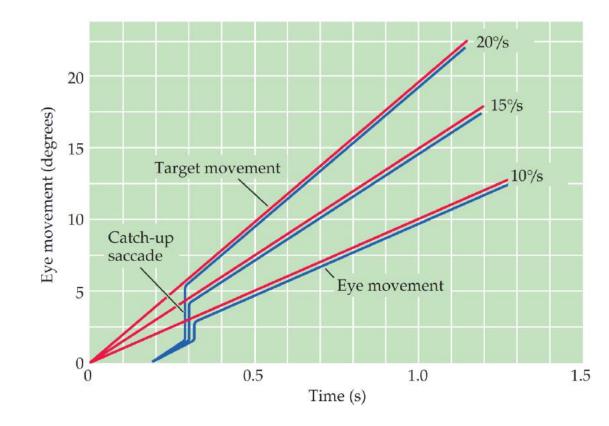






- Can be small or large (reading vs exploring the room)
- Can be voluntary or reflexive
- During 200ms period: compute the position of target with respect to fovea and convert to motor command
- The eye movement is 15-100 ms
- If target moves during eye movement, adjustments have to be made after movement is completed.

Eye in Motion: Smooth Pursuits



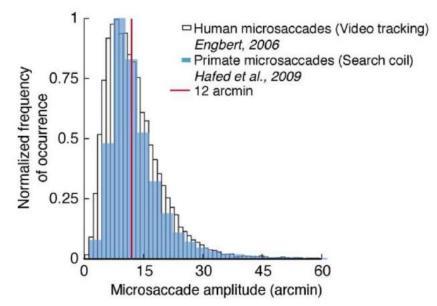
- Slower tracking movements that keep stimulus on the fovea
- Voluntary in that observer can choose whether or not to track moving stimulus
- Only highly trained observers can make a smooth pursuit movement in the absence of a moving target

Motion During Fixation

• Drifts:

slow movements away from fixation point, 20 to 40 Hz

- Flicks (microsaccades): reposition the eye on target, 1 degree max
- Ocular micro tremors: 150-2500nm, 40-100Hz



References: [115]

MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fridman https://selfdrivingcars.mit.edu lex.mit.edu

idman January it.edu 2018

Cognitive Load Overview

From the Perspective of Computer Vision

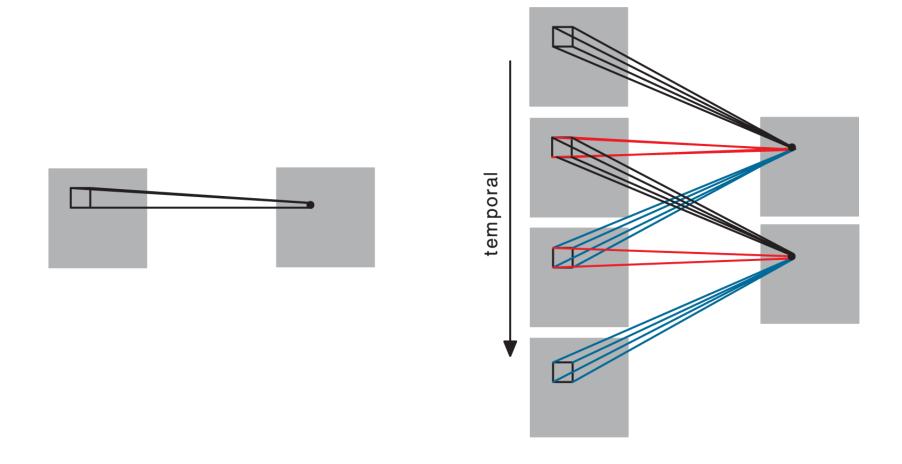
* Each of the following bullet points have several papers validating it.

- Pupil equations:
 - Brighter light = smaller pupil
 - Higher cognitive load = larger pupil
- Blink equations
 - Higher cognitive load = slower blink rate
 - Higher cognitive load = shorter blink duration

• Questions:

- Which of these metrics can be accurately extracted in real-world driving data?
- Are there other metrics that may work better in such conditions?

3D Convolutional Neural Networks

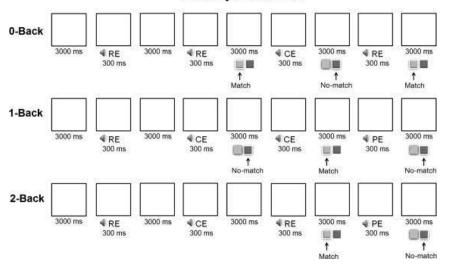


January 2018

Real-World Data

92 drivers perform "n-back" tasks requiring various levels of cognitive load:

- **0-back:** Say the number right after it's read
- **1-back:** Say the number previous to the current one.
- **2-back:** Say the number 2 prior to the current one.

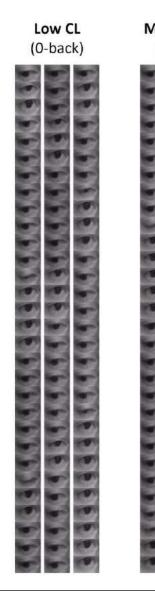


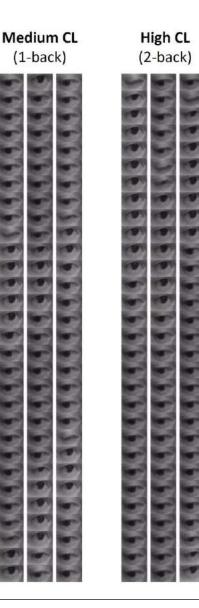
Auditory N-Back Task

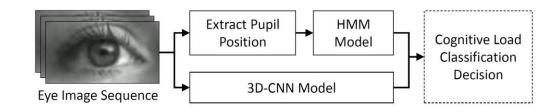
For the full updated list of references visit: https://selfdrivingcars.mit.edu/references January

2018

Cognitive Load Estimation

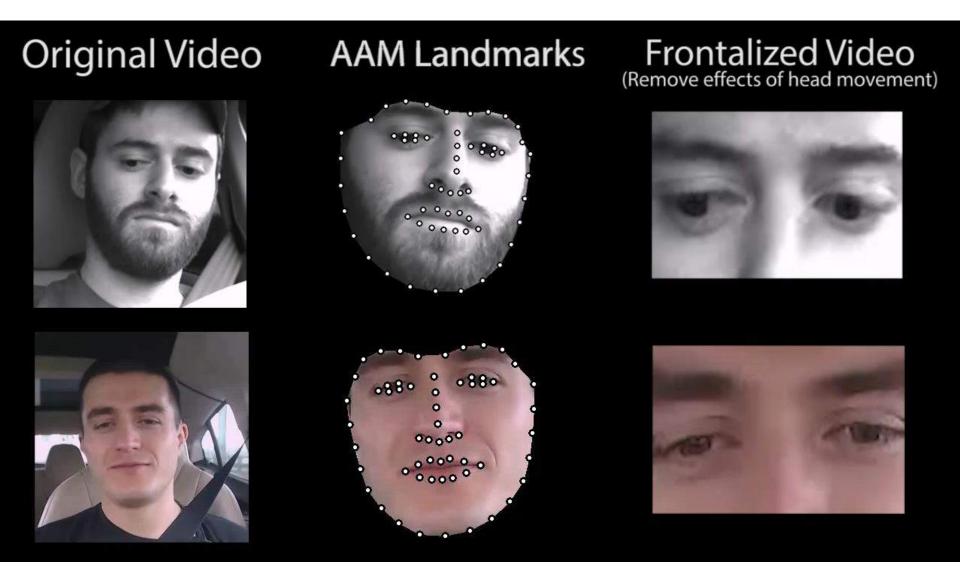






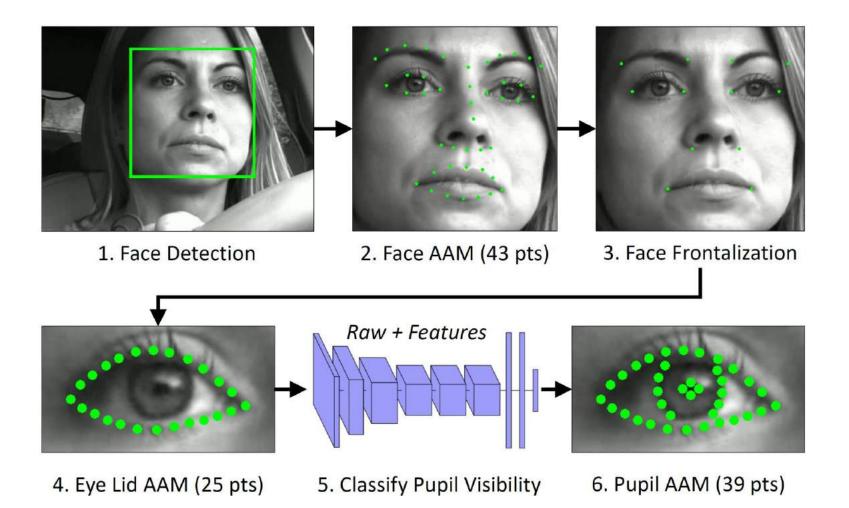
- 6 seconds, 16 fps, 90 images
- Two approaches: HMM and 3D-CNN
- HMM: Hidden Markov Model
 - Input: Sequence of pupil positions (normalized by intraocular segment)
- **3D-CNN:** Three Dimensional Convolutional Neural Network
 - Input: Sequence of raw images of eye region

Dealing with Vibration and Movement



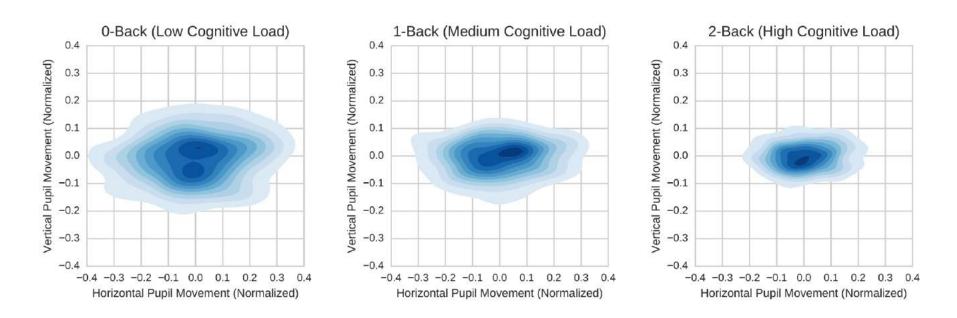
MIT 6.S094: Deep Learning for Self-Driving CarsLex FridmanJanuaryhttps://selfdrivingcars.mit.edulex.mit.edu2018

Preprocessing Pipeline



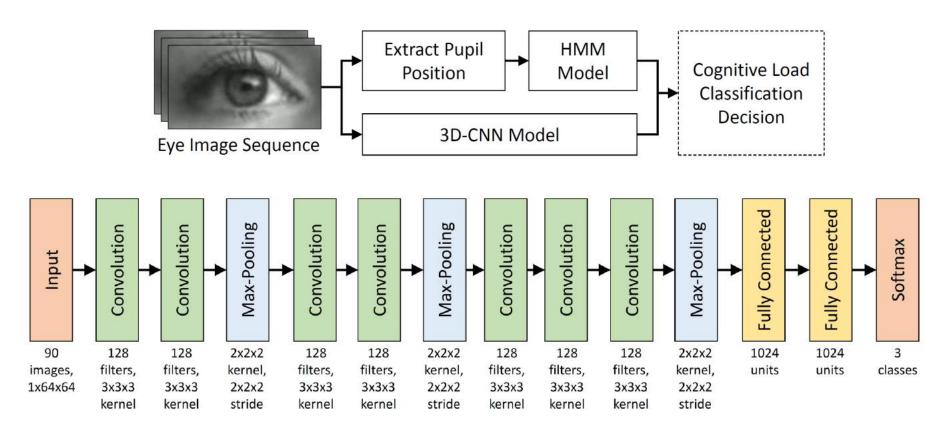
MIT 6.S094: Deep Learning for Self-Driving CarsLex FridmanJanuaryhttps://selfdrivingcars.mit.edulex.mit.edu2018

Visualizing the Dataset: Pupil Movement



- Metric: Pupil position normalized by intraocular distance
- Visualization: Kernel density estimation (KDE)
- Dataset size: 92 subjects
- Takeaway: Observable aggregate differences between all 3 levels

Cognitive Load Estimation



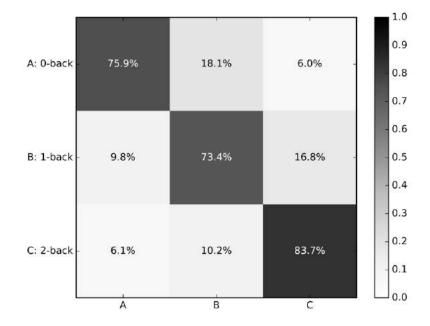
HMM: Hidden Markov Model

Input: Sequence of pupil positions (normalized by intraocular distance)

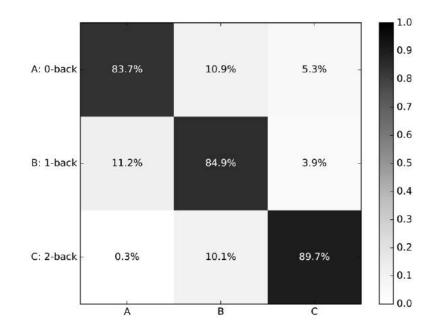
3D-CNN: Three Dimensional Convolutional Neural Network

Input: Sequence of raw images of eye region

Driver Cognitive Load Estimation



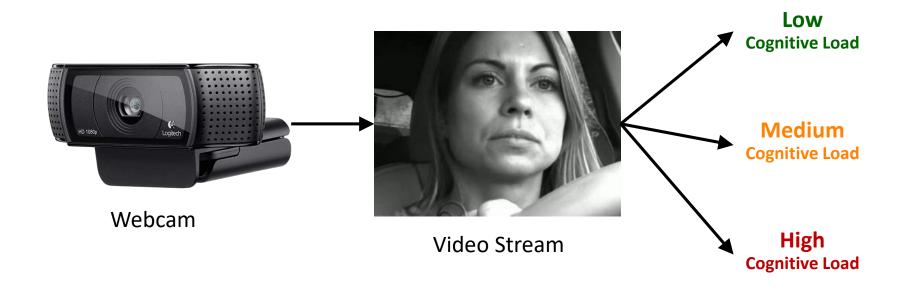
HMM Approach Average Accuracy: 77.7%



3D-CNN Approach Average Accuracy: **86.1%**

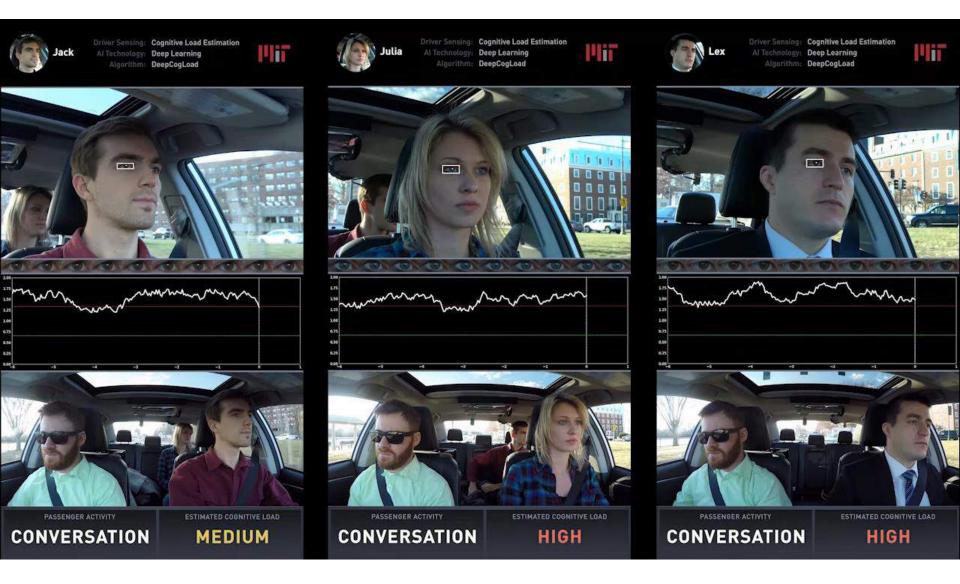
Cognitive Load Estimation: Open Source = Open Innovation

Implication: Make driver cognitive load estimation accessible



MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fridman January https://selfdrivingcars.mit.edu lex.mit.edu 2018

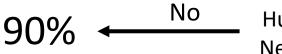
Real-Time Cognitive Load Estimation



Overview

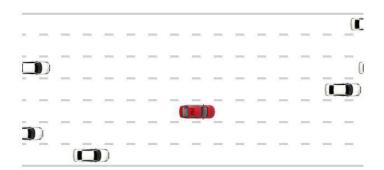
- Human Imperfections
- Pedestrian Detection
- Body Pose Estimation
- Face Detection
- Glance Classification
- Emotion Recognition
- Cognitive Load Estimation
- Human-Centered Vision for Autonomous Vehicles

Human-Centered Artificial Intelligence Approach



Human Needed ^{Yes} → 10%

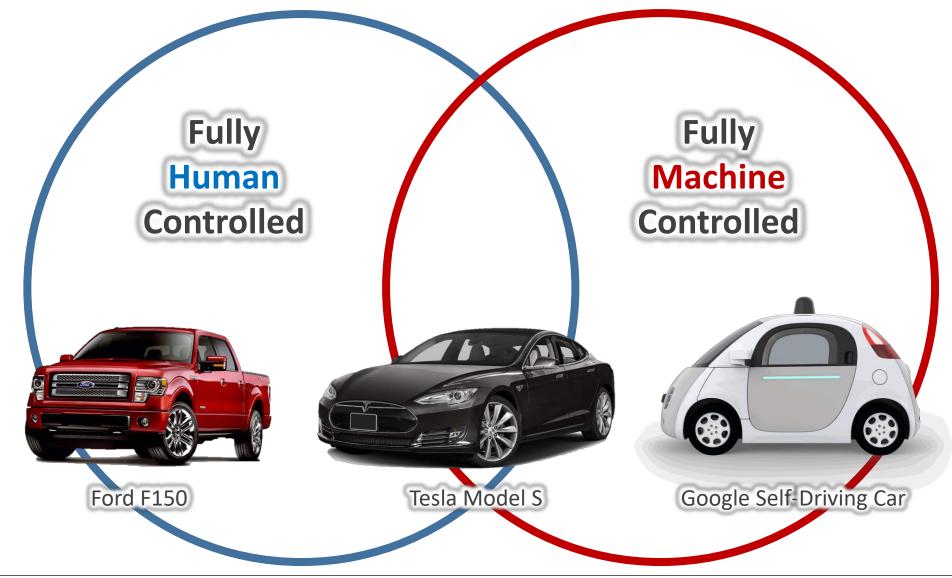
Solve the perception-control problem where **possible**:



And where **not possible**: involve the human

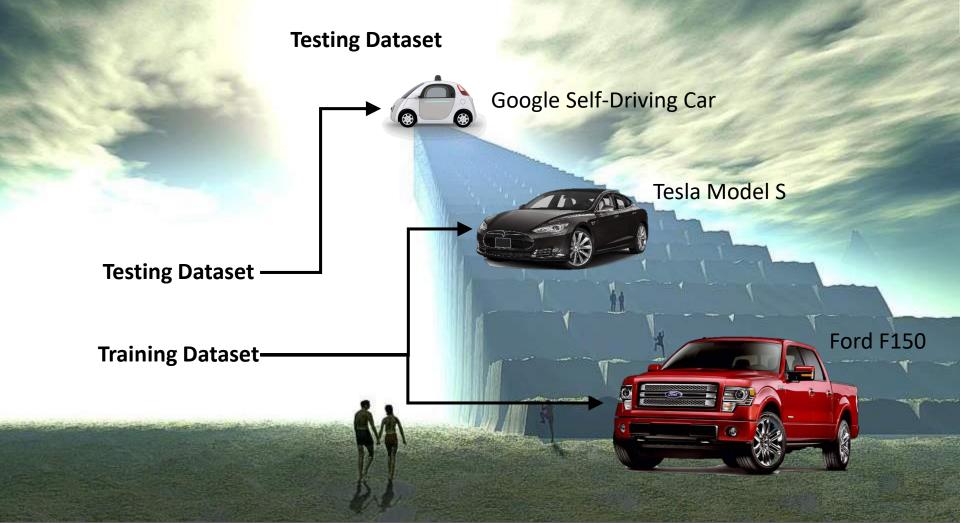
For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

Human at the Center of Automation: The Way to Full Autonomy Includes the Human



Stairway to Mass-Scale Automation

Stairway to Mass-Scale Automation



Lex Fridman lex.mit.edu

January

2018

Human-Centered Autonomy

- A self-driving car may be more a Personal Robot and less a perfect Perception-Control system. Why:
 - Flaws need humans: The scene understanding problem requires much more than pixel-level labeling
 - Exist with humans: Achieving both an enjoyable and safe driving experience may require "driving like a human".
- Quite possibly, the first wide reaching and profound integration of personal robots in society.
 - Wide reaching: 1 billion cars on the road.
 - **Profound:** Human gives control of his/her life directly to robot.
 - **Personal:** One-on-one relationship of communication, collaboration, understanding and trust.

Massachuse Institute of Technology For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

Human (and Machine) Imperfections

- "People call these things imperfections, but they're not. That's the good stuff..."
- "And then we get to choose who we let in to our weird little worlds. You're not perfect, sport. And let me save you the suspense. This girl you met, she isn't perfect either. But the question is: whether or not you're perfect for each other. That's the whole deal. That's what intimacy is all about..."
- "Now you can know everything in the world, sport, but the only way you're finding out that one is by giving it a shot."

MIT HCAV: Human-Centered Autonomous Vehicle

March 2018

CHI 2018 Course: Deep Learning for Understanding the Human

• Part 1 (80 minutes)

- Introduction to Deep Learning
 - Theory, insights, and intuitions
 - Tools to get started applying DL to various domains
- Convolutional Neural Networks
 - Face recognition
 - Eye tracking
 - Cognitive load estimation
 - Emotion recognition
- Part 2 (80 minutes)
 - Recurrent Neural Networks
 - Natural Language Processing
 - Voice Recognition
 - Mixing Convolutional and Recurrent Neural Networks
 - Activity recognition
- Part 3 (80 minutes)
 - Generative Neural Networks
 - Speech Synthesis
 - Peripheral Vision Visualization

CHI 2018

Engage with CHI

HELLO DAVE

agi.mit.edu

* dates, times, rooms in red are different than the usual

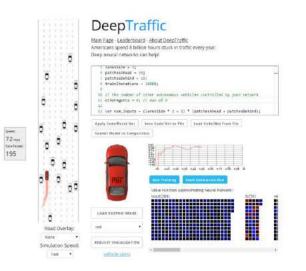
Mon. Jan 22	Lex Fridman, MIT
7pm, 54-100	Artificial General Intelligence
Tue, Jan 23	Josh Tenenbaum, MIT
7pm, 54-100	Computational Cognitive Science
Wed, Jan 24	Ray Kurzweil, Google
	How to Create a Mind
Thu, Jan 25	Lisa Feldman Barrett, NEU
7pm, 54-100	Emotion Creation
Fri, Jan 26	Nate Derbinsky, NEU
7pm, 54-100	Cognitive Modeling
Mon, Jan 29	Andrej Karpathy, Tesla
	Deep Learning
Mon, Jan 29	Stephen Wolfram, Wolfram Resea
7pm, 54-100	Knowledge-Based Programming
Tue, Jan 30	Richard Moyes, Article36
7pm, 54-100	Al Safety: Autonomous Weapon Systems
Wed, Jan 31	Marc Raibert, Boston Dynamics
7pm, 54-100	Robots That Work in the Real World
Thu, Feb 1	Ilya Sutskever, OpenAl
7pm, 54-100	Deep Reinforcement Learning
Eri Eab 2	Lox Fridman MIT

Fri, Feb 2 Lex Fridman, MIT 7pm, 54-100 Human-Centered Artificial Intelligence

arch

6.S099

Artificial General Intelligence agi.mit.edu



assachusetts

Institute of

Technology

What Next?

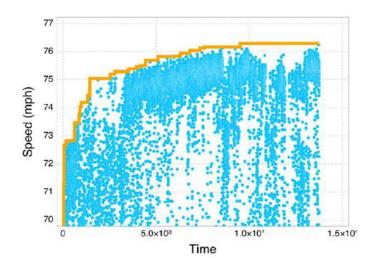
• Competitions

- Ongoing until May 2018. Results, insights → NIPS 2018
- DeepTraffic: <u>https://selfdrivingcars.mit.edu/deeptraffic</u>
- SegFuse: <u>https://selfdrivingcars.mit.edu/segfuse</u>
- DeepCrash: <u>https://selfdrivingcars.mit.edu/deepcrash</u>
- Upcoming MIT Courses:
 - 6.S099: Artificial General Intelligence <u>https://agi.mit.edu</u>
 - 6.S191: Introduction to Deep Learning: <u>http://introtodeeplearning.com</u>
 - 15.S14: Global Business of AI & Robotics <u>http://tiny.cc/gbair18</u>
- If you're interested in the application of deep learning in the automotive space, come do research with us: <u>https://hcai.mit.edu/join</u> (opens in Feb 2018)

Thank You

amazon alexa

Autoliv



Lex Fridman Instructor

Michael Glazer

lack Terwilliger

TA

Li Ding TA

TA

Julia Kindelsberger

Spencer Dodd

TA

Dan Brown

Benedikt Jenik TA

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu